We present a novel approach to develop and process a microelectrode integrated in a standard AFM tip. The presented fabrication process allows the integration of an electroactive area at an exactly defined distance above of the end of a scanning probe tip and the subsequent remodeling and sharpening of the original AFM tip using a focused ion beam (FIB) technique (See ref 1 for patent information). Thus, the functionality of scanning electrochemical microscopy (SECM) can be integrated into any standard atomic force microscope (AFM). With the demonstrated approach, a precisely defined and constant distance between the microelectrode and the sample surface can be obtained, alternatively to the indirect determination of this distance usually applied in SECM experiments. Hence, a complete separation of the topographical information and the electrochemical signal is possible. The presented technique is a significant step toward electrochemical imaging with submicrometer electrodes as demonstrated by the development of the first integrated frame submicroelectrode.
The formation and growth of self-assembled octadecylsiloxane monolayers on native silicon and mica substrates have been studied using atomic force microscopy, ellipsometry, and infrared spectroscopy. Submonolayer ODS films of varying surface coverages were prepared by immersing the substrates into dilute solutions of octadecyltrichlorosilane in toluene for different periods of time, and the submonolayer film structures were compared between mica and silicon substrates for different water contents of the adsorbate solutions and for different time delays between solution preparation and substrate immersion (solution age). It was found that, in general, both a continuous growth (formation of disordered, liquidlike submonolayers) and an island-type growth (formation of organized assemblies with vertically aligned hydrocarbon chains) are involved in the formation of ODS monolayers, whereby the relative contributions depend strongly on the solution properties. With increasing water content or increasing age of the adsorbate solution, island-type growth is strongly favored on both silicon and mica surfaces, which indicates the kinetically controlled formation of larger, preordered aggregates of silanol molecules as the primary hydrolysis products in solution. For identical conditions of film preparation, both the degree of structural order in the submonolayer films and the overall adsorption rate was found to be higher on mica in comparison to silicon. The higher structural order was interpreted as a consequence of the lower hydroxyl group concentration and a correspondingly enhanced surface diffusion rate of weakly bound film molecules on a mica substrate. The enhanced adsorption rate, on the other hand, points to some additional activation of a mica surface with respect to silanol adsorption, which might be related to its ionic composition containing mobile surface charges in contrast to the covalent, neutral character of a native silicon surface.
In this study, the contribution of grain boundaries to the oxygen reduction and diffusion kinetics of La0.8Sr0.2MnO3 (LSM) thin films is investigated. Polycrystalline LSM thin films with columnar grains of different grain sizes as well as epitaxial thin films were prepared by pulsed laser deposition. (18)O tracer exchange experiments were performed at temperatures from 570 °C to 810 °C and subsequently analyzed by secondary ion mass spectrometry (SIMS). The isotope concentration depth profiles of polycrystalline films clearly indicate contributions from diffusion and surface exchange in grains as well as in grain boundaries. Measured depth profiles were analyzed by finite element modeling and revealed the diffusion coefficients D and oxygen exchange coefficients k of both the grain bulk and grain boundaries. Values obtained for grain boundaries (Dgb and kgb) are almost three orders of magnitude higher than those of the grains (Dg and kg). Hence, grain boundaries may not only facilitate fast oxygen diffusion but also fast oxygen exchange kinetics. Variation of the A-site stoichiometry ((La0.8Sr0.2)0.95MnO3) did not lead to large changes of the kinetic parameters. Properties found for epitaxial layers without grain boundaries (Db and kb) are close to those of the grains in polycrystalline layers.
Background: EPL1 belongs to the cerato-platanin protein family found exclusively in fungi and associated with fungus-host interactions. Results: EPL1 self-assembles at air/water interfaces, increases the polarity of surfaces and solutions, and binds to chitin. Conclusion:The reported properties for EPL1 show that cerato-platanin proteins are clearly different from hydrophobins. Significance: This study reports several novel properties for cerato-platanin proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.