Experiments were conducted in order to study and characterize electrohydrodynamic atomization in the simple-jet mode for inviscid liquids. The operational window of this mode regarding the electric potential and liquid flow rate is presented. From the data it could be concluded that this mode can be divided by the characteristics of its breakup mechanism and that these characteristics are a function of the liquid Weber number and the electric Bond number for a given setup. Additionally we were also able to calculate the average charge per droplet and define the average size of primary and satellite droplets. The dispersion of the spray was also studied regarding its relation to the liquid Weber number and to the electric Bond number. We conclude that simple-jet mode electrosprays are a good option for applications which require monodisperse micrometer droplets with high throughput.
In this study, an alternative parameter for quantifying the signals of fluorescently labelled bacteria (e.g. propidium iodide, Cyanine 3, etc.) in microscopic images was investigated. Three common parameters (mean grey value (MGV), mean grey value which is corrected for the background (MGVcwB) and the signal to background ratio (SBR) per bacterial cell) are used as reference parameters. As an alternative, the coefficient of variation (CV) is defined as the ratio of the logarithm of the standard deviation and the logarithm of the mean grey value of a bacterial cell in a microscopic image. The actual fluorescence value was safeguarded by measuring commercially available fluorescence latex microspheres at regular time intervals within our study. The precision and the correlation of the respective values of MGV, MGVcwB, SBR and CV taken from identical images were measured and subsequently normalized in order to enhance the inter-parameter comparability. The average precision of CV was the highest (89% ± 14) with decreasing numbers for MGVcwB, SBR, and MGV (78% ± 25, 71% ± 32, and, 52% ± 22, respectively). Changes in operational parameters, e.g., microscope settings, protocol steps, etc., yielded good results for the CV but less precise results for MGV, MGVcwB, and SBR in the analyses of identical images.In conclusion, using the alternative parameter CV, changes in the composition of microbial ecosystems may thus be investigated at the highest precision level.
The use of a non-invasive fluorescence in situ hybridization (FISH)-based method on saliva for the detection of SARS-CoV-2 is evaluated in a proof-of-concept study and thereafter utilized in an outpatient setting with the Biotrack-MED® analyzer. For a proof-of-concept study, saliva samples were obtained from 28 persons with mild or moderate COVID-19-related symptoms who were tested RT-PCR positive or negative for SARS-CoV-2. In an outpatient setting, 972 individual saliva samples were utilized. All saliva samples were FISHed with a Cy3-labeled SARS-CoV-2-specific DNA probe and were analyzed manually by fluorescence microscopy (proof-of-concept) or with the SARS-CoV-2 application of the Biotrack-MED® analyzer, a semi-autonomous multi-sample filter cytometer. The proof-of-concept study showed a sensitivity of 96.0% and a specificity of 98.5% and is therefore comparable to the RT-PCR analysis of nasopharyngeal swabs. The outpatient setting showed a sensitivity of 90.9% and a specificity of 94.5% and seems therefore a valid assay for the detection of SARS-CoV-2 in individuals that are healthy, mild or moderate symptomatic. In conclusion, the method evaluated in this study, the FISH-based SARS-CoV-2 application of the Biotrack-MED® analyzer, is a sensitive and reliable assay for the detection of SARS-CoV-2 in the general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.