Switchable metal-organic frameworks change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing and actuation applications. The three-dimensional engineering of metal-organic frameworks has reached a high level of maturity, but spatiotemporal evolution opens a new perspective towards engineering materials in the 4 th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable metal-organic frameworkdeliberately tuned by variation of cobalt content. We present a spectrum of advanced analytical methods for analyzing the switching kinetics stimulated by vapor adsorption using in situ time resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. The time constants for the bulk ensembles range from 2 -300 s. Differences in spatiotemporal response of crystal ensembles originate from a delay (induction) time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.
SummaryWe describe the formation of SiC nanopowder using an atmospheric argon microwave plasma with tetramethylsilane (TMS) as precursor. The impact of several process conditions on the particle size of the product is experimentally investigated. Particles with sizes ranging from 7 nm to about 20 nm according to BET and XRD measurements are produced. The dependency of the particle size on the process parameters is evaluated statistically and explained with growth-rate equations derived from the theory of Ostwald ripening. The results show that the particle size is mainly influenced by the concentration of the precursor material in the plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.