ObjectivesTo assess the feasibility of a 2nd generation MR-compatible, remote-controlled manipulator (RCM) as an aid to perform MR-guided transrectal prostate biopsy in males with suspicion of prostate cancer (PCa).MethodsThis prospective phase I study was approved by the local ethical committee and written informed consent was obtained from each patient. Twenty patients with ≥1 cancer suspicious region (CSR) with a PI-RADS score of ≥3 detected on the diagnostic multi-parametric MRI and no prior prostate treatment underwent MR-guided biopsy with the aid of the RCM. Complications were classified according to the modified Clavien system for reporting surgical complications. For evaluation of the workflow, procedure- and manipulation times were recorded.ResultsAll CSR’s (n=20) were reachable with the MR-compatible RCM and the cancer detection rate was 70 %. The median procedure time was 36:44 minutes (range, 23 – 61 minutes) and the median manipulation time for needle guide movement was 5:48 minutes (range, 1:15 – 18:35 minutes). Two Clavien grade 1 complications were reported.ConclusionsIt is feasible and safe to perform transrectal MR-guided prostate biopsy using a MR-compatible RCM as an aid. It is a fast and efficient way to biopsy suspicious prostate lesions with a minimum number of biopsies per patient.Key Points • It is feasible to perform transrectal prostate biopsy using a MR-compatible RCM. • Using a RCM for MR-guided biopsy is safe, fast, and efficient. • All cancer suspicious regions were reachable with the RCM.
In order to improve the current clinical application of magnetic resonance (MR)-guided prostate biopsies, a new, fully magnetic resonance imaging (MRI)-compatible solution has been developed. This solution consists of a five degree-of-freedom (5DOF) pneumatic robot, a programmable logic controller (PLC), and a software application for visualization and robot control. The robot can be freely positioned on the MR table. For the calibration of the robot and MR coordinate system, the robot’s needle guide (NG) is used. The software application supports the calibration with image segmentation and graphic overlays and guides the user through the interventional planning process. After selecting a target point, the application calculates the needed movements via solving the kinematics of the robot and translating the adjustment into commands for the PLC driving the step motors of the robot. In case further adjustments are required, the software also allows for manual control of the robot, to position the NG according to the acquired MR images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.