Nas últimas duas décadas, o uso de feições lineares tem sido frequentemente investigado no controle de qualidade cartográfica, sendo que diversos métodos foram propostos para tal finalidade. Neste sentido, o presente trabalho tem como objetivo descrever os métodos da Banda Épsilon (Método das Áreas), do Buffer Simples, do Buffer Duplo, da Distância de Hausdorff e da Influência do Vértice na avaliação da acurácia planimétrica através de feições lineares, utilizando como padrão o Decreto-lei nº 89.817 aliada à ET-ADGV, e ao final, compará-los com o método tradicional por pontos. Para tanto, foi avaliada a acurácia posicional planimétrica de uma ortoimagem Ikonos, onde os resultados obtidos mostraram que os métodos da Banda Épsilon, Distância de Hausdorff e Influência do Vértice apresentaram resultados similares, obtendo-se classificação Classe B na escala 1:10.000. Já os métodos Buffer Simples e Buffer Duplo apresentaram resultados semelhantes ao método tradicional por pontos, que por sua vez, foram mais restritivos que os métodos anteriormente citados, classificando a ortoimagem como Classe C na escala 1:10.000.
Soil bulk density (ρ b ) data are needed for a wide range of environmental studies.However, ρ b is rarely reported in soil surveys. An alternative to obtain ρ b for data-scarce regions, such as the Rio Doce basin in southeastern Brazil, is indirect estimation from less costly covariates using pedotransfer functions (PTF). This study primarily aims to develop region-specific PTFs for ρ b using multiple linear regressions (MLR) and random forests (RF). Secondly, it assessed the accuracy of PTFs for data grouped into soil horizons and soil classes. For that purpose, we compared the performance of PTFs compiled from the literature with those developed here. Two groups of data were evaluated as covariates: 1) readily available soil properties and 2) maps derived from a digital elevation model and MODIS satellite imagery, jointly with lithological and pedological maps. The MLR model was applied step-wise to select significant predictors and its accuracy assessed by means of cross-validation. The PTFs developed using all data estimated ρ b from soil properties by MLR and RF, with R 2 of 0.41 and 0.51, respectively. Alternatively, using environmental covariates, RF predicted ρ b with R 2 of 0.41. Grouping criteria did not lead to a significant increase in the estimates of ρ b . The accuracy of the 'regional' PTFs developed for this study was greater than that found with the 'compiled' PTFs. The best PTF will be firstly used to assess soil carbon stocks and changes in the Rio Doce basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.