The synthesis of 4,5-dihydro-4,5-dioxo-l/f-pyrrolo[2,3-/]quinoline-2-carboxylic acid (7,9-didecarboxymethoxatin, 70X) and its ester (60X) are described and their acid-base properties, electrochemistry, and chemical properties are compared to the cofactor Methoxatin, as well as to those of other o-quinones. The two-electron redox potentials of 60x and 70x are shown to be ca. 110 mV less than those of the penanthroline-5,6-quinones but to be comparable to those of methoxatin at all pH values. Replacement of the pyridine ring of 70X by a benzene ring reduces its oxidation potential by 100 mV. 70x forms a C-5 adduct with acetone and a cyclic bis(carbinolamine) adduct with urea. The rate constants for formation and dissociation of the urea adducts of methoxatin, 60X, and the most electrophilic phenanthrolinequinone (30x) are compared. The o-quinone
The influence of sulphated ligand and pH on thermal denaturation of basic fibroblast growth factor (bFGF) was investigated by differential scanning calorimetry (DSC), and verified by fluorescence spectrophotometry. Purity of bFGF before and after heat denaturation was assessed by SDS-PAGE analysis. In DSC studies the samples were heated to 95 degrees C. The midpoint of the temperature change in the thermogram was designated as Tm. Sulphated ligand experiments were undertaken in potassium phosphate (pH 6.5) and sodium acetate buffers. Control thermograms (with no ligand) showed a Tm at 59 degrees C in potassium phosphate buffer. Higher Tm values were noted as sulphated ligand concentration was increased. Similarly when heparin was added, the Tm moved to a higher temperature. A ratio as low as 0.3:1 of heparin to bFGF, increased the Tm to 90 degrees C, which is a 31 degrees C shift in Tm. The effect of pH on thermal denaturation of bFGF was studied in a citrate-phosphate-borate buffer system. A shift in Tm from 46 to 65 degrees C was observed as the pH is changed from 4 to 8. Changes in protein conformation as a function of pH were monitored by fluorescence spectroscopy. It was found that a pH range from 5 to 9 is optimal for the stability of bFGF formulations. In a stability study it was noted that heparin protected bFGF from thermal denaturation only at high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.