The influence of sulphated ligand and pH on thermal denaturation of basic fibroblast growth factor (bFGF) was investigated by differential scanning calorimetry (DSC), and verified by fluorescence spectrophotometry. Purity of bFGF before and after heat denaturation was assessed by SDS-PAGE analysis. In DSC studies the samples were heated to 95 degrees C. The midpoint of the temperature change in the thermogram was designated as Tm. Sulphated ligand experiments were undertaken in potassium phosphate (pH 6.5) and sodium acetate buffers. Control thermograms (with no ligand) showed a Tm at 59 degrees C in potassium phosphate buffer. Higher Tm values were noted as sulphated ligand concentration was increased. Similarly when heparin was added, the Tm moved to a higher temperature. A ratio as low as 0.3:1 of heparin to bFGF, increased the Tm to 90 degrees C, which is a 31 degrees C shift in Tm. The effect of pH on thermal denaturation of bFGF was studied in a citrate-phosphate-borate buffer system. A shift in Tm from 46 to 65 degrees C was observed as the pH is changed from 4 to 8. Changes in protein conformation as a function of pH were monitored by fluorescence spectroscopy. It was found that a pH range from 5 to 9 is optimal for the stability of bFGF formulations. In a stability study it was noted that heparin protected bFGF from thermal denaturation only at high temperature.
Precise determination of the peptide content in drug substance samples depends highly upon the particular peptide compound and methodology used. Four independent methods were evaluated and compared to determine which would produce the best experimental precision for analysis of thymalfasin (thymosin alpha-1). Four different methods were evaluated including elemental analysis (CHN), quantitative amino acid analysis (AAA), high-performance liquid chromatography (HPLC), and Kjeldahl. This study demonstrates that the AAA method is highly variable in one laboratory while quite precise in another laboratory. Similarly, HPLC results depended on the laboratory conducting the study with more precise values obtained under cGMP. On the contrary, the CHN method yielded highly precise [i.e. <2% coefficient of variation (CV)] values. As precise knowledge of protein content is fundamental for the compounding of final pharmaceutical product of a specific potency, the CHN analysis is recommended for peptide content determination of the drug substance thymalfasin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.