Myotonic dystrophy (DM) is the most common inherited neuromuscular disease in adults, with a global incidence of 1 in 8000 individuals. DM is an autosomal dominant, multisystemic disorder characterized primarily by myotonia and progressive muscle weakness. Genomic and complementary DNA probes that map to a 10-kilobase Eco RI genomic fragment from human chromosome 19q13.3 have been used to detect a variable length polymorphism in individuals with DM. Increases in the size of the allele in patients with DM are now shown to be due to an increased number of trinucleotide CTG repeats in the 3' untranslated region of a DM candidate gene. An increase in the severity of the disease in successive generations (genetic anticipation) is accompanied by an increase in the number of trinucleotide repeats. Nearly all cases of DM (98 percent or 253 of 258 individuals) displayed expansion of the CTG repeat region. These results suggest that DM is primarily caused by mutations that generate an amplification of a specific CTG repeat.
Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-α, HP1-β, and HP1-γ are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage.
Myotonic dystrophy is a common dominant disorder (global incidence of 1:8,000) with variable onset and a protean nature of symptoms mainly involving progressive muscle wasting, myotonia and cataracts. To define the molecular defect, we have cloned the essential region of chromosome 19q13.3, including proximal and distal markers in a 700-kilobase contig formed by overlapping cosmids and yeast artificial chromosomes (YACs). The central part of the contig bridges an area of about 350 kilobases between two new flanking crossover borders. This segment has been extensively characterized through the isolation of five YAC clones and the subsequent subcloning in cosmids from which a detailed EcoRI, HindIII, MluI and NotI restriction map has been derived. Two genomic probes and two homologous complementary DNA probes were isolated using the cosmids. These probes are all situated within approximately 10 kilobases of genomic DNA and detect an unstable genomic segment in myotonic dystrophy patients. The length variation in this segment shows similarities to the instability seen at the fragile X locus. The physical map location and the genetic characteristics of the length polymorphism is compatible with a direct role in the pathogenesis of myotonic dystrophy.
Myotonic dystrophy (DM) is the most common form of adult muscular dystrophy, with a prevalence of 2-14 per 100,000 individuals. The disease is characterized by progressive muscle weakness and sustained muscle contraction, often with a wide range of accompanying symptoms. The age at onset and severity of the disease show extreme variation, both within and between families. Despite its clinical variability, this dominant condition segregates as a single locus at chromosome 19q13.3 in every population studied. It is flanked by the tightly linked genetic markers ERCC1 proximally and D19S51 distally; these define the DM critical region. We report the isolation of an expressed sequence from this region which detects a DNA fragment that is larger in affected individuals than in normal siblings or unaffected controls. The size of this fragment varies between affected siblings, and increases in size through generations in parallel with increasing severity of the disease. We postulate that this unstable DNA sequence is the molecular feature that underlies DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.