The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (
Mstn
−/−
) and compact (Berlin High Line,
BEH
c/c
). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition,
Mstn
−/−
muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.
The calcium-binding protein parvalbumin (PV) occurs at high concentrations in fast-contracting vertebrate muscle fibers. Its putative role in facilitating the rapid relaxation of mammalian fast-twitch muscle fibers by acting as a temporary buffer for Ca2+ is still controversial. We generated knockout mice for PV (PV −/−) and compared the Ca2+ transients and the dynamics of contraction of their muscles with those from heterozygous (PV +/−) and wild-type (WT) mice. In the muscles of PV-deficient mice, the decay of intracellular Ca2+ concentration ([Ca2+]i) after 20-ms stimulation was slower compared with WT mice and led to a prolongation of the time required to attain peak twitch tension and to an extension of the half-relaxation time. The integral [Ca2+]iin muscle fibers of PV −/− mice was higher and consequently the force generated during a single twitch was ∼40% greater than in PV +/− and WT animals. Acceleration of the contraction-relaxation cycle of fast-twitch muscle fibers by PV may confer an advantage in the performance of rapid, phasic movements.
In this review, the present knowledge about the mechanisms involved in the control of the phenotypic expression of mammalian muscle fibers is summarized. There is a discussion as to how the activity imposed on the muscle fibers by the motoneuron finally induces in the muscle cells the expression of those genes that define its particular phenotype. The functional and molecular heterogeneity of skeletal muscle is thus defined by the existence of motor units with varied function, while the homogeneity of muscle fibers belonging to the same motor unit is yet another indication of the importance of activity in the control of gene expression of the mammalian muscle fiber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.