a b s t r a c tThe flavin-dependent monooxygenase TetX confers resistance to all clinically relevant tetracyclines, including the recently approved, broad-spectrum antibiotic tigecycline (Tygacil Ò ) which is a critical last-ditch defense against multidrug-resistant pathogens. TetX represents the first resistance mechanism against tigecycline, which circumvents both the tet-gene encoded resistances, relying on active efflux of tetracyclines, and ribosomal protection proteins. The alternative enzyme-based mechanism of TetX depends on regioselective hydroxylation of tetracycline antibiotics to 11a-hydroxy-tetracyclines. Here, we report the X-ray crystallographic structure determinations at 2.1 Å resolution of native TetX from Bacteroides thetaiotaomicron and its complexes with tetracyclines. Our crystal structures explain the extremely versatile substrate diversity of the enzyme and provide a first step towards the rational design of novel tetracycline derivatives to counter TetX-based resistance prior to emerging clinical observations.
Sialyltransferases of the mammalian ST8Sia family catalyze oligo- and polysialylation of surface-localized glycoproteins and glycolipids through transfer of sialic acids from CMP-sialic acid to the nonreducing ends of sialic acid acceptors. The crystal structure of human ST8SiaIII at 1.85-Å resolution presented here is, to our knowledge, the first solved structure of a polysialyltransferase from any species, and it reveals a cluster of polysialyltransferase-specific structural motifs that collectively provide an extended electropositive surface groove for binding of oligo-polysialic acid chain products. The ternary complex of ST8SiaIII with a donor sugar analog and a sulfated glycan acceptor identified with a sialyltransferase glycan array provides insight into the residues involved in substrate binding, specificity and sialyl transfer.
Expression of the aromatic hydroxylase TetX under aerobic conditions confers bacterial resistance against tetracycline antibiotics. Hydroxylation inactivates and degrades tetracyclines, preventing inhibition of the prokaryotic ribosome. X-ray crystal structure analyses of TetX in complex with the second-generation and third-generation tetracyclines minocycline and tigecycline at 2.18 and 2.30 Å resolution, respectively, explain why both clinically potent antibiotics are suitable substrates. Both tetracyclines bind in a large tunnel-shaped active site in close contact to the cofactor FAD, pre-oriented for regioselective hydroxylation to 11a-hydroxytetracyclines. The characteristic bulky 9-tert-butylglycylamido substituent of tigecycline is solvent-exposed and does not interfere with TetX binding. In the TetX-minocycline complex a second binding site for a minocycline dimer is observed close to the active-site entrance. The pocket is formed by the crystal packing arrangement on the surface of two neighbouring TetX monomers. Crystal structure analysis at 2.73 Å resolution of xenon-pressurized TetX identified two adjacent Xe-binding sites. These putative dioxygen-binding cavities are located in the substrate-binding domain next to the active site. Molecular-dynamics simulations were performed in order to characterize dioxygen-diffusion pathways to FADH2 at the active site.
Polysialic acid (polySia) is a homopolymeric saccharide that is associated with some neuroinvasive pathogens and is found on selective cell types in their eukaryotic host. The presence of a polySia capsule on these bacterial pathogens helps with resistance to phagocytosis, cationic microbial peptides and bactericidal antibody production. The biosynthesis of bacterial polySia is catalysed by a single polysialyltransferase (PST) transferring sialic acid from a nucleotide-activated donor to a lipid-linked acceptor oligosaccharide. Here we present the X-ray structure of the bacterial PST from Mannheimia haemolytica serotype A2, thereby defining the architecture of this class of enzymes representing the GT38 family. The structure reveals a prominent electropositive groove between the two Rossmann-like domains forming the GT-B fold that is suitable for binding of polySia chain products. Complex structures of PST with a sugar donor analogue and an acceptor mimetic combined with kinetic studies of PST active site mutants provide insight into the principles of substrate binding and catalysis. Our results are the basis for a molecular understanding of polySia biosynthesis in bacteria and might assist the production of polysialylated therapeutic reagents and the development of novel antibiotics.
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.