Abstract-Migrating computational intensive tasks from mobile devices to more resourceful cloud servers is a promising technique to increase the computational capacity of mobile devices while saving their battery energy. In this paper, we consider a MIMO multicell system where multiple mobile users (MUs) ask for computation offloading to a common cloud server. We formulate the offloading problem as the joint optimization of the radio resources−the transmit precoding matrices of the MUs−and the computational resources−the CPU cycles/second assigned by the cloud to each MU−in order to minimize the overall users' energy consumption, while meeting latency constraints. The resulting optimization problem is nonconvex (in the objective function and constraints). Nevertheless, in the single-user case, we are able to express the global optimal solution in closed form. In the more challenging multiuser scenario, we propose an iterative algorithm, based on a novel successive convex approximation technique, converging to a local optimal solution of the original nonconvex problem. Then, we reformulate the algorithm in a distributed and parallel implementation across the radio access points, requiring only a limited coordination/signaling with the cloud. Numerical results show that the proposed schemes outperform disjoint optimization algorithms.
Abstract-Demand-side management, together with the integration of distributed energy generation and storage, are considered increasingly essential elements for implementing the smart grid concept and balancing massive energy production from renewable sources. We focus on a smart grid in which the demand-side comprises traditional users as well as users owning some kind of distributed energy sources and/or energy storage devices. By means of a day-ahead optimization process regulated by an independent central unit, the latter users intend to reduce their monetary energy expense by producing or storing energy rather than just purchasing their energy needs from the grid. In this paper, we formulate the resulting grid optimization problem as a noncooperative game and analyze the existence of optimal strategies. Furthermore, we present a distributed algorithm to be run on the users' smart meters, which provides the optimal production and/or storage strategies, while preserving the privacy of the users and minimizing the required signaling with the central unit. Finally, the proposed day-ahead optimization is tested in a realistic situation.
In this two-parts paper we propose a decentralized strategy, based on a game-theoretic formulation, to find out the optimal precoding/multiplexing matrices for a multipoint-to-multipoint communication system composed of a set of wideband links sharing the same physical resources, i.e., time and bandwidth. We assume, as optimality criterion, the achievement of a Nash equilibrium and consider two alternative optimization problems: 1) the competitive maximization of mutual information on each link, given constraints on the transmit power and on the spectral mask imposed by the radio spectrum regulatory bodies; and 2) the competitive maximization of the transmission rate, using finite order constellations, under the same constraints as above, plus a constraint on the average error probability. In Part I of the paper, we start by showing that the solution set of both noncooperative games is always nonempty and contains only pure strategies. Then, we prove that the optimal precoding/multiplexing scheme for both games leads to a channel diagonalizing structure, so that both matrix-valued problems can be recast in a simpler unified vector power control game, with no performance penalty. Thus, we study this simpler game and derive sufficient conditions ensuring the uniqueness of the Nash equilibrium. Interestingly, although derived under stronger constraints, incorporating for example spectral mask constraints, our uniqueness conditions have broader validity than previously known conditions. Finally, we assess the goodness of the proposed decentralized strategy by comparing its performance with the performance of a Pareto-optimal centralized scheme.To reach the Nash equilibria of the game, in Part II, we propose alternative distributed algorithms, along with their convergence conditions.
Abstract-We propose a novel decomposition framework for the distributed optimization of general nonconvex sum-utility functions arising naturally in the system design of wireless multiuser interfering systems. Our main contributions are: i) the development of the first class of (inexact) Jacobi best-response algorithms with provable convergence, where all the users simultaneously and iteratively solve a suitably convexified version of the original sum-utility optimization problem; ii) the derivation of a general dynamic pricing mechanism that provides a unified view of existing pricing schemes that are based, instead, on heuristics; and iii) a framework that can be easily particularized to well-known applications, giving rise to very efficient practical (Jacobi or Gauss-Seidel) algorithms that outperform existing adhoc methods proposed for very specific problems. Interestingly, our framework contains as special cases well-known gradient algorithms for nonconvex sum-utility problems, and many blockcoordinate descent schemes for convex functions.
Abstract-In Part I of this paper, we proposed and analyzed a novel algorithmic framework for the minimization of a nonconvex (smooth) objective function, subject to nonconvex constraints, based on inner convex approximations. This Part II is devoted to the application of the framework to some resource allocation problems in communication networks. In particular, we consider two non-trivial case-study applications, namely: (generalizations of) i) the rate profile maximization in MIMO interference broadcast networks; and the ii) the max-min fair multicast multigroup beamforming problem in a multi-cell environment. We develop a new class of algorithms enjoying the following distinctive features: i) they are distributed across the base stations (with limited signaling) and lead to subproblems whose solutions are computable in closed form; and ii) differently from current relaxation-based schemes (e.g., semidefinite relaxation), they are proved to always converge to d-stationary solutions of the aforementioned class of nonconvex problems. Numerical results show that the proposed (distributed) schemes achieve larger worstcase rates (resp. signal-to-noise interference ratios) than state-ofthe-art centralized ones while having comparable computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.