The sluggish kinetics of the oxygen evolution reaction (OER) is the bottleneck for the practical exploitation of water splitting. Here, the potential of a core–shell structure of hydrous NiMoO4 microrods conformally covered by Co3O4 nanoparticles via atomic layer depositions is demonstrated. In situ Raman and synchrotron‐based photoemission spectroscopy analysis confirms the leaching out of Mo facilitates the catalyst reconstruction, and it is one of the centers of active sites responsible for higher catalytic activity. Post OER characterization indicates that the leaching of Mo from the crystal structure, induces the surface of the catalyst to become porous and rougher, hence facilitating the penetration of the electrolyte. The presence of Co3O4 improves the onset potential of the hydrated catalyst due to its higher conductivity, confirmed by the shift in the Fermi level of the heterostructure. In particular NiMoO4@Co3O4 shows a record low overpotential of 120 mV at a current density of 10 mA cm−2, sustaining a remarkable performance operating at a constant current density of 10, 50, and 100 mA cm−2 with negligible decay. Presented outcomes can significantly contribute to the practical use of the water‐splitting process, by offering a clear and in‐depth understanding of the preparation of a robust and efficient catalyst for water‐splitting.
Hydrogen evolution reaction through electrolysis holds great potential as a clean, renewable, and sustainable energy source. Platinum-based catalysts are the most efficient to catalyze and convert water into molecular hydrogen; however, their large-scale application is prevented by scarcity and cost of Pt. In this work, we propose a new ternary composite of Ag2S, MoS2, and reduced graphene oxide (RGO) flakes via a one-pot synthesis. The RGO support assists the growth of two-dimensional MoS2 nanosheets partially covered by silver sulfides as revealed by high-resolution transmission electron microscopy. Compared with the bare MoS2 and MoS2/RGO, the Ag2S/MoS2 anchored on the RGO surface (the ternary system Ag2S/MoS2/RGO) demonstrated a high catalytic activity toward hydrogen evolution reaction (HER). Its superior electrochemical activity toward HER is evidenced by the positively shifted (−190 mV vs reversible hydrogen electrode (RHE)) overpotential at a current density of −10 mA/cm2 and a small Tafel slope (56 mV/dec) compared with a bare and binary system. The Ag2S/MoS2/RGO ternary catalyst at an overpotential of −200 mV demonstrated a turnover frequency equal to 0.38 s–1. Electrochemical impedance spectroscopy was applied to understand the charge-transfer resistance; the ternary sample shows a very small charge-transfer resistance (98 Ω) at −155 mV vs RHE. Such a large improvement can be attributed to the synergistic effect resulting from the enhanced active site density of both sulfides and to the improved electrical conductivity at the interfaces between MoS2 and Ag2S. This ternary catalyst opens up further optimization strategies to design a stable and cheap catalyst for hydrogen evolution reaction, which holds great promise for the development of a clean energy landscape.
Water splitting is considered one of the most promising approaches to power the globe without the risk of environmental pollution. The oxygen evolution reaction (OER) is even more challenging because the generation of only one oxygen molecule involves the transfer of four e– and removal of four H+ ions from water. Thus, developing highly efficient catalysts to meet industrial requirements remains a focus of attention. Herein, the prominent role of Sn in accelerating the electron transfer kinetics of Ni5P4 nanosheets in OER is reported. The post catalytic survey elucidates that the electrochemically induced Ni–Sn oxides at the vicinity of phosphides are responsible for the observed catalytic activity, delivering current densities of 10, 30, and 100 mA cm–2 at overpotentials of only 173 ± 5.2, 200 ±7.4, and 310 ± 5.5 mV, respectively. The density functional theory calculation also supports the experimental findings from the basis of the difference observed in density of states at the Fermi level in the presence/absence of Sn. This work underscores the role of Sn in OER and opens a promising avenue toward practical implementation of hydrogen production through water splitting and other catalytic reactions.
Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.