Polyethylenimine (PEI) shows high transfection efficiency and cytoxicity due to its high amine density. The new disulfide cationic polymer, linear poly(ethylenimine sulfide) (l-PEIS), was synthesized for efficient and safe gene delivery. As the amine density of l-PEIS increased, the transfection efficiency also increased. l-PEIS-6 and l-PEIS-8 show transfection efficiencies that are similar to that of PEI. However, cytotoxicity of l-PEIS was not observed due to the biodegradable disulfide bond. The disulfide bonds are stable in the oxidative extracellular condition and can be degraded rapidly in the reductive intracellular condition. The degradation of l-PEIS in HeLa cells was visualized by fluorescence microscopy using the probe-probe dequenching effect of BODIPY-FL fluorescence dye. l-PEIS was degraded completely within 3 h.
Poly(ethylene oxide sulfide) (PEOS), polymers consisting of an internal ethylene oxide oligomer and disulfide linkage, were synthesized and characterized. The degree of polymerization was dependent upon temperature, dimethyl sulfoxide condition, and monomer hydrophobicity. The stability of PEOS was measured by the size exclusion chromatography method after the incubation both with and without 5 mM glutathione. The disulfide bond was stable in the extracellular condition but completely degraded in 2 h in the reductive cytosolic condition. Hydrophilic PEOS polymers showed no cytotoxicity on the HepG2 cell line. On the basis of these properties, PEOS can be applied in many drug delivery fields.
Niclosamide (NIC), a conventional anthelmintic agent, is emerging as a repurposed drug for COVID-19 treatment. However, the clinical efficacy is very limited due to its low oral bioavailability resulting from its poor aqueous solubility. In the present study, a new hybrid drug delivery system made of NIC, montmorillonite (MMT), and Tween 60 is proposed to overcome this obstacle. At first, NIC molecules were immobilized into the interlayer space of cationic clay, MMT, to form NIC–MMT hybrids, which could enhance the solubility of NIC, and then the polymer surfactant, Tween 60, was further coated on the external surface of NIC–MMT to improve the release rate and the solubility of NIC and eventually the bioavailability under gastrointestinal condition when orally administered. Finally, we have performed an in vivo pharmacokinetic study to compare the oral bioavailability of NIC for the Tween 60-coated NIC–MMT hybrid with Yomesan®, which is a commercially available NIC. Exceptionally, the Tween 60-coated NIC–MMT hybrid showed higher systemic exposure of NIC than Yomesan®. Therefore, the present NIC–MMT–Tween 60 hybrid can be a potent NIC drug formulation with enhanced solubility and bioavailability in vivo for treating Covid-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.