Polyethylenimine (PEI) shows high transfection efficiency and cytoxicity due to its high amine density. The new disulfide cationic polymer, linear poly(ethylenimine sulfide) (l-PEIS), was synthesized for efficient and safe gene delivery. As the amine density of l-PEIS increased, the transfection efficiency also increased. l-PEIS-6 and l-PEIS-8 show transfection efficiencies that are similar to that of PEI. However, cytotoxicity of l-PEIS was not observed due to the biodegradable disulfide bond. The disulfide bonds are stable in the oxidative extracellular condition and can be degraded rapidly in the reductive intracellular condition. The degradation of l-PEIS in HeLa cells was visualized by fluorescence microscopy using the probe-probe dequenching effect of BODIPY-FL fluorescence dye. l-PEIS was degraded completely within 3 h.
Poly(ethylene oxide sulfide) (PEOS), polymers consisting of an internal ethylene oxide oligomer and disulfide linkage, were synthesized and characterized. The degree of polymerization was dependent upon temperature, dimethyl sulfoxide condition, and monomer hydrophobicity. The stability of PEOS was measured by the size exclusion chromatography method after the incubation both with and without 5 mM glutathione. The disulfide bond was stable in the extracellular condition but completely degraded in 2 h in the reductive cytosolic condition. Hydrophilic PEOS polymers showed no cytotoxicity on the HepG2 cell line. On the basis of these properties, PEOS can be applied in many drug delivery fields.
BackgroundStroke in cancer patients is not rare but is a devastating event with high mortality. However, the predictors of mortality in stroke patients with cancer have not been well addressed. D-dimer could be a useful predictor because it can reflect both thromboembolic events and advanced stages of cancer.AimIn this study, we evaluate the possibility of D-dimer as a predictor of 30-day mortality in stroke patients with active cancer.MethodsWe included 210 ischemic stroke patients with active cancer. The 30-day mortality data were collected by reviewing medical records. We also collected follow-up D-dimer levels in 106 (50%) participants to evaluate the effects of treatment response on D-dimer levels.ResultsOf the 210 participants, 30-day mortality occurred in 28 (13%) patients. Higher initial NIHSS scores, D-dimer levels, and CRP levels as well as frequent cryptogenic mechanism, systemic metastasis, multiple vascular territory lesion, hemorrhagic transformation, and larger infarct volume were related to 30-day mortality. In the multivariate analysis, D-dimer [adjusted OR (aOR) = 2.19; 95% CI, 1.46–3.28, P < 0.001] predicted 30-day mortality after adjusting for confounders. The initial NIHSS score (aOR = 1.07; 95% CI, 1.00–1.14, P = 0.043) and hemorrhagic transformation (aOR = 3.02; 95% CI, 1.10–8.29, P = 0.032) were also significant independent of D-dimer levels. In the analysis of D-dimer changes after treatment, the mortality group showed no significant decrease in D-dimer levels, despite treatment, while the survivor group showed the opposite response.ConclusionsD-dimer levels may predict 30-day mortality in acute ischemic stroke patients with active cancer.
Background and ObjectiveTo investigate the clinical relevance of CSF myelin oligodendrocyte glycoprotein-immunoglobulin G (MOG-IgG) testing in a large multicenter cohort.MethodsIn this multicenter cohort study, paired serum-CSF samples from 474 patients with suspected inflammatory demyelinating disease (IDD) from 11 referral hospitals were included. After serum screening, patients were grouped into seropositive myelin oligodendrocyte glycoprotein antibody associated disease (MOGAD, 31), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG + NMOSD, 60), other IDDs (217), multiple sclerosis (MS, 45), and non-IDDs (121). We then screened CSF for MOG-IgG and compared the clinical and serologic characteristics of patients uniquely positive for MOG-IgG in the CSF to seropositive patients with MOGAD.ResultsNineteen patients with seropositive MOGAD (61.3%), 9 with other IDDs (CSF MOG + IDD, 4.1%), 4 with MS (8.9%), but none with AQP4-IgG + NMOSD nor with non-IDDs tested positive in the CSF for MOG-IgG. The clinical, pathologic, and prognostic features of patients uniquely positive for CSF MOG-IgG, with a non-MS phenotype, were comparable with those of seropositive MOGAD. Intrathecal MOG-IgG synthesis, observed from the onset of disease, was shown in 12 patients: 4 of 28 who were seropositive and 8 who were uniquely CSF positive, all of whom had involvement of either brain or spinal cord. Both CSF MOG-IgG titer and corrected CSF/serum MOG-IgG index, but not serum MOG-IgG titer, were associated with disability, CSF pleocytosis, and level of CSF proteins.DiscussionCSF MOG-IgG is found in IDD other than MS and also in MS. In IDD other than MS, the CSF MOG-IgG positivity can support the diagnosis of MOGAD. The synthesis of MOG-IgG in the CNS of patients with MOGAD can be detected from the onset of the disease and is associated with the severity of the disease.Classification of EvidenceThis study provides Class II evidence that the presence of CSF MOG-IgG can improve the diagnosis of MOGAD in the absence of an MS phenotype, and intrathecal synthesis of MOG-IgG was associated with increased disability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.