The mutual resistance of transducer arrays is investigated in order to design arrays with improved performance for high intensity sounds at a given frequency. This work proposes the theory that the mutual resistance is related to the loading effects of pressure waves propagated from a piston driver on the surface of another driver. Using this interpretation, the important characteristics of the mutual resistance of two piston drivers are explained and the conditions for local maxima in the mutual resistance are easily determined. On the basis of analyses of the interactions between a driver and acoustic pressure waves, we propose a method to determine the driver radius and the distance between two drivers that give maximum mutual radiation resistance. To evaluate the proposed method, the total resistance of a transducer array is calculated using the formulas for mutual and self-resistance established by Pritchard. The results of the calculations of the total resistances of arrays with many drivers show that a transducer array with drivers arranged sparsely can achieve a larger value of the radiation power per unit area as well as better radiation efficiency than an array in which the drivers are in a closely packed arrangement at a given frequency.
A new viscosity-variation monitoring device for measuring viscosity changes in small amounts of liquid in real time is designed and fabricated. The device is specifically developed to evaluate the physical characteristics of liquids that are readily changeable and/or difficult to obtain in larger quantities, such as biomaterials. It is capable of monitoring the viscosity variation of a sample as small as 13 nl. The device is composed of two chambers connected by multi-microchannels and is fabricated using MEMS (micro-electro-mechanical system) technology. Each chamber has a unimorphic piezoelectric diaphragm for generating and sensing sound waves. One chamber is regarded as an actuator and the other as a sensor. Viscosity variations can then be quickly and easily measured by detecting the signal output obtained from the sensor for either a continuous or tone-burst single-frequency input to the actuator. The performance of the device is ascertained by experiments performed on test samples with various viscosities.
The feasibility of utilizing PZT films as future data storage media was investigated using a modified AFM. Applying voltages between a conductive AFM tip and the PZT films causes the switching of ferroelectric domains. The domains are observed using an EFM imaging technique. The experimental results and calculations revealed that the electrostatic force generated between the polarized area and the tip is a main contributor for the imaging of the polarized domains. The written features on ferroelectric films were less than 100 nm in diameter, implying the possibility of realizing data storage devices with ultra-high area density. The disappearance of the polarized images without any applied voltage was observed, which is a drawback in this application of PZT thin films.
Using a bimorph-type bending actuator, we propose a new method for controlling the focal length of a transducer by electric DC voltage. We designed two focal length controllable ultrasonic transducers with actuators, a line-focus and a point-focus transducer. The polyvinylidene fluoride (PVDF) piezoelectric type polymer film is used for transmitting and receiving of ultrasonic signals. Using the new method, it is confirmed by investigation of the underwater acoustic field that the focal length can be controlled to within 10% of the radius of the transducer curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.