Electrocatalytic conversion of nitrogen oxides to value-added chemicals is a promising strategy for mitigating the human-caused unbalance of the global nitrogen-cycle, but controlling product selectivity remains a great challenge. Here we show iron–nitrogen-doped carbon as an efficient and durable electrocatalyst for selective nitric oxide reduction into hydroxylamine. Using in operando spectroscopic techniques, the catalytic site is identified as isolated ferrous moieties, at which the rate for hydroxylamine production increases in a super-Nernstian way upon pH decrease. Computational multiscale modelling attributes the origin of unconventional pH dependence to the redox active (non-innocent) property of NO. This makes the rate-limiting NO adsorbate state more sensitive to surface charge which varies with the pH-dependent overpotential. Guided by these fundamental insights, we achieve a Faradaic efficiency of 71% and an unprecedented production rate of 215 μmol cm−2 h−1 at a short-circuit mode in a flow-type fuel cell without significant catalytic deactivation over 50 h operation.
Despite a promising activity of Fe-N-C catalysts at beginning-of-life in protonexchange membrane fuel cells (PEMFCs), their poor durability in operating PEMFCs remains a great challenge for the successful replacement of commercial Pt-based catalysts. One of the key reasons for this poor operando durability is the surface oxidation of carbonaceous supports via Fenton(-like) reactions between the Fe centers and the intermediate product of the oxygen reduction reaction (ORR) in acidic medium, H2O2. In the present study, we have investigated the pH effect on the chemical deactivation of Fe-N-C catalysts by contacting with controlled amount of H2O2. Covering the entire pH range 0-14, we reveal a strong pH dependence of the H2O2-induced deactivation. Especially, acidic H2O2 treatment leads to a severe decrease in ORR activity while almost negligible deactivation is found after the treatment in sufficiently strong alkaline electrolyte. Electron paramagnetic resonance (EPR) study reveals a positive correlation between the magnitude of Fe-N-C activity decrease and the signal intensity of hydroxyl radical spin adduct after H2O2 treatment at a given pH. Reactive oxygen species (ROS) such as the hydroxyl radical is identified as a key deactivating agent of Fe-N-C catalysts operating from acidic to neutral pH environments. This result suggests that controlling the formation and lifetime of ROS at such pH is crucial to secure durable fuel cell operation with Fe-N-C cathodes. Alternatively, fuel cell operation under highly alkaline environment could also be considered to improve the catalytic durability, by virtue of different Fenton(-like) reaction pathway at such pH.
To design electrochemical interfaces for efficient electric-chemical energy interconversion, it is critical to reveal the electric double layer (EDL) structure and relate it with electrochemical activity; nonetheless, this has been a long-standing challenge. Of particular, no molecular-level theories have fully explained the characteristic two peaks arising in the potential-dependence of the EDL capacitance, which is sensitively dependent on the EDL structure. We herein demonstrate that our first-principles-based molecular simulation reproduces the experimental capacitance peaks. The origin of two peaks emerging at anodic and cathodic potentials is unveiled to be an electrosorption of ions and a structural phase transition, respectively. We further find a cation complexation gradually modifies the EDL structure and the field strength, which linearly scales the carbon dioxide reduction activity. This study deciphers the complex structural response of the EDL and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and electrocatalysis.
Single-atom catalysts (SACs) featuring atomically dispersed metal cations covalently embedded in a carbon matrix show significant potential to achieve high catalytic performance in various electrocatalytic reactions. Although considerable advances have been achieved in their syntheses and electrochemical applications, further development and fundamental understanding are limited by a lack of strategies that can allow the quantitative analyses of their intrinsic catalytic characteristics, that is, active site density (SD) and turnover frequency (TOF). Here we show an in situ SD quantification method using a cyanide anion as a probe molecule. The decrease in cyanide concentration triggered by irreversible adsorption on metal-based active sites of a model Fe–N–C catalyst is precisely measured by spectrophotometry, and it is correlated to the relative decrease in electrocatalytic activity in the model reaction of oxygen reduction reaction. The linear correlation verifies the surface-sensitive and metal-specific adsorption of cyanide on Fe–N x sites, based on which the values of SD and TOF can be determined. Notably, this analytical strategy shows versatile applicability to a series of transition/noble metal SACs and Pt nanoparticles in a broad pH range (1–13). The SD and TOF quantification can afford an improved understanding of the structure–activity relationship for a broad range of electrocatalysts, in particular, the SACs, for which no general electrochemical method to determine the intrinsic catalytic characteristics is available.
Single-atom catalysts (SACs) hold great promise for maximized metal utilization, exceptional tunability of the catalytic site, and selectivity. Moreover, they can substantially contribute to lower the cost and abundancy challenges associated with raw materials. Significant breakthroughs have been achieved over the past decade, for instance, in terms of synthesis methods for SACs, their catalytic activity, and the mechanistic understanding of their functionality. Still, great challenges lie ahead in order to render them viable for application in important fields such as electrochemical energy conversion of renewable electrical energy. We have identified three particular development fields for advanced SACs that we consider crucial, namely, the scale-up of the synthesis, the understanding of their performance in real devices such as fuel cells and electrolyzers, and the understanding and mitigation of their degradation. In this Perspective, we review recent activities of the community and provide our outlook with respect to the aspects required to bring SACs toward application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.