Small regulatory RNAs (sRNAs) are key players in bacterial regulatory networks. Monitoring their expression inside living colonized or infected organisms is essential for identifying sRNA functions, but few studies have looked at sRNA expression during host infection with bacterial pathogens. Insufficient in vivo studies monitoring sRNA expression attest to the difficulties in collecting such data, we therefore developed a non-mammalian infection model using larval Galleria mellonella to analyze the roles of Staphylococcus aureus sRNAs during larval infection and to quickly determine possible sRNA involvement in staphylococcal virulence before proceeding to more complicated animal testing. We began by using the model to test infected larvae for immunohistochemical evidence of infection as well as host inflammatory responses over time. To monitor sRNA expression during infection, total RNAs were extracted from the larvae and invading bacteria at different time points. The expression profiles of the tested sRNAs were distinct and they fluctuated over time, with expression of both sprD and sprC increased during infection and associated with mortality, while rnaIII expression remained barely detectable over time. A strong correlation was observed between sprD expression and the mortality. To confirm these results, we used sRNA-knockout mutants to investigate sRNA involvement in Staphylococcus aureus pathogenesis, finding that the decrease in death rates is delayed when either sprD or sprC was lacking. These results demonstrate the relevance of this G. mellonella model for investigating the role of sRNAs as transcriptional regulators involved in staphylococcal virulence. This insect model provides a fast and easy method for monitoring sRNA (and mRNA) participation in S. aureus pathogenesis, and can also be used for other human bacterial pathogens.
Introduction The aim of the present study was to describe autonomic urethral sphincter (US) innervation using specific muscular and neuronal antibody markers and 3D reconstruction. Material and methods We performed en‐bloc removal of the entire pelvis of three male human fetuses between 18 and 40 weeks. Serial whole mount sections (5 μm intervals) were stained and investigated. The sections were stained with Masson's trichrome and Eosin Hematoxylin, and immunostained with: anti‐SMA antibody for smooth muscle; anti‐S100 antibody for all nerves; and anti‐PMP22 antibody, anti‐TH antibody, anti‐CGRP antibody, anti‐NOS antibody for somatic, adrenergic, sensory and nitrergic nerve fibers, respectively. The slides were digitized for 3D reconstruction to improve topographical understanding. An animated reconstruction of the autonomic innervation of the US was generated. Results The external and internal US are innervated by autonomic nerves of the inferior hypogastric plexus (IHP). These nerves are sympathetic (positive anti‐TH antibody), sensory (positive anti‐CGRP antibody), and nitrergic (positive anti‐NOS antibody). Some autonomic fibers run within the neurovascular bundles, posterolaterally. Others run from the IHP to the posteromedial aspect of the prostate apex, above an through the rectourethral muscle. The external US is also innervated by somatic nerves (positive anti‐PMP22 antibody) arising from the pudendal nerve, joining the midline but remaining below the rectourethral. Conclusions This study provides anatomical evidence of an autonomic component in the innervation of the external US that travels in the neurovascular bundle. During radical prostatectomy, the rectourethral muscle and the neurovascular bundles are to be preserved, particularly during apical dissection.
Increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of snake venoms. However, the complexity of animal venoms and the extreme synergy of the venom components during envenomation calls for critical review and analysis. The epithelium is a primary target for injected viper venom’s toxic substances, and therefore, is a focus in modern toxinology. We used the Vero epithelial cell line as a model to compare the actions of a crude Macrovipera lebetina obtusa (Levantine viper) venom with the actions of the same venom with two key enzymatic components inhibited (specifically, phospholipase A2 (PLA2) and metalloproteinases) in the bioenergetic cellular response, i.e., oxygen uptake and reactive oxygen species generation. In addition to the rate of free-radical oxidation and lipid peroxidation, we measured real-time mitochondrial respiration (based on the oxygen consumption rate) and glycolysis (based on the extracellular acidification rate) using a Seahorse analyzer. Our data show that viper venom drives an increase in both glycolysis and respiration in Vero cells, while the blockage of PLA2 or/and metalloproteinases affects only the rates of the oxidative phosphorylation. PLA2-blocking in venom also increases cytotoxic activity and the overproduction of reactive oxygen species. These data show that certain components of the venom may have a different effect within the venom cocktail other than the purified enzymes due to the synergy of the venom components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.