Purpose Spot‐scanning arc therapy (SPArc) is an emerging proton modality that can potentially offer a combination of advantages in plan quality and delivery efficiency, compared with traditional IMPT of a few beam angles. Unlike IMPT, frequent low‐to‐high energy layer switching (so called switch‐up (SU)) can degrade delivery efficiency for SPArc. However, it is a tradeoff between the minimization of SU times and the optimization of plan quality. This work will consider the energy layer optimization (ELO) problem for SPArc and develop a new ELO method via energy matrix (EM) regularization to improve plan quality and delivery efficiency. Methods The major innovation of EM method for ELO is to design an EM that encourages desirable energy‐layer map with minimal SU during SPArc, and then incorporate this EM into the SPArc treatment planning to simultaneously minimize the number of SU and optimize plan quality. The EM method is solved by the fast iterative shrinkage‐thresholding algorithm and validated in comparison with a state‐of‐the‐art method, so‐called energy sequencing (ES). Results EM is validated and compared with ES using representative clinical cases. In terms of delivery efficiency, EM had fewer SU than ES with an average of 35% reduction of SU. In terms of plan quality, compared with ES, EM had smaller optimization objective values and better target dose conformality, and generally lower dose to organs‐at‐risk and lower integral dose to body. In terms of computational efficiency, EM was substantially more efficient than ES by at least 10‐fold. Conclusion We have developed a new ELO method for SPArc using EM regularization and shown that this new method EM can improve both delivery efficiency and plan quality, with substantially reduced computational time, compared with ES.
Background: In treatment planning, beam angle optimization (BAO) refers to the selection of a subset with a given number of beam angles from all available angles that provides the best plan quality. BAO is a NP-hard combinatorial problem. Although exhaustive search (ES) can exactly solve BAO by exploring all possible combinations, ES is very time-consuming and practically infeasible. Purpose: To the best of our knowledge, (1) no optimization method has been demonstrated that can provide the exact solution to BAO,and (2) no study has validated an optimization method for solving BAO by benchmarking with the optimal BAO solution (e.g., via ES), both of which will be addressed by this work. Methods: This work considers BAO for proton therapy,for example,the selection of 2-4 beam angles for IMPT. The optimal BAO solution is obtained via ES and serves as the ground truth. A new BAO algorithm, namely angle generation (AG) method, is proposed, and demonstrated to provide nearly-exact solutions for BAO in reference to the ES solution. AG iteratively optimizes the angular set via group-sparsity (GS) regularization, until the planning objective does not decrease further. Results: Since GS alone can also solve BAO, AG was validated and compared with GS for 2-angle brain, 3-angle lung, and 4-angle brain cases, in reference to the optimal BAO solutions obtained by ES: the AG solution had the rank (1/276, 1/2024, 4/10 626), while the GS solution had the rank (42/276, 279/2024, 4328/10 626). Conclusions: A new BAO algorithm called AG is proposed and shown to provide substantially improved accuracy for BAO from current methods with nearly-exact solutions to BAO, in reference to the ground truth of optimal BAO solution via ES.
BackgroundIrritable bowel syndrome (IBS) is a common disorder of gut-brain interaction with challenging treatment. According to evidence-based studies, acupuncture is likely to be a promising therapy and subservient adjunct for IBS. Mechanism study of acupuncture based on related clinical trials of high quality, nevertheless, is still vacant.AimThis study aims to assess the results and qualities of current clinical evidence and conclude the relevant pathophysiological mechanisms and therapeutic effects of acupuncture on IBS with diarrhea (IBS-D).MethodsLiterature from four databases, namely, PubMed, Cochrane Library, EMBASE, and Web of Science, was systematically searched to obtain eligible randomized controlled trials (RCTs), which contained mechanism research of acupuncture treatment in IBS-D patients. Two independent reviewers completed data extraction and quality evaluation using the RevMan 5.4.1 software.ResultsTen trials that covered 19 items related to mechanism research were included in this review. Acupuncture was reported to improve IBS-D symptoms and quality of life, with positive effects in regulating brain-gut peptides, cerebral activities, neuroendocrine functions, psychological state, and inflammatory GI and hypersensitive intestinal tracts.ConclusionAcupuncture has potential influence on pathophysiology alterations such as regulating brain-gut peptides, altering cerebral connectivity and activity, promoting neuroendocrine functions and mental state, and mitigating inflammation as well as hypersensitivity of bowels in IBS-D patients, but further studies of high quality are still necessary.Systematic Review Registration[https://www.crd.york.ac.uk/PROSPERO], identifier [CRD42022320331].
Objective: The optimization of energy layer distributions is crucial to proton ARC therapy: on one hand, a sufficient number of energy layers is needed to ensure the plan quality; on the other hand, an excess number of energy jumps can substantially slow down the treatment delivery. This work will develop a new treatment plan optimization method with direct minimization of number of energy jumps (NEJ), which will be shown to outperform state-of-the-art methods in both plan quality and delivery efficiency.
Approach: The proposed method jointly optimizes the plan quality and minimizes the NEJ. To minimize NEJ, (1) the proton spots x is summed per energy layer to form the energy vector y; (2) y is binarized via sigmoid transform into y1; (3) y1 is multiplied with a predefined energy order vector via dot product into y2; (4) y2 is filtered through the finite-differencing kernel into y3 in order to identify NEJ; (5) only the NEJ of y3 is penalized, while x is optimized for plan quality. The solution algorithm to this new method is based on iterative convex relaxation.
Main Results: The new method is validated in comparison with state-of-the-art methods called energy sequencing (ES) method and energy matrix (EM) method. In terms of delivery efficiency, the new method had fewer NEJ, less energy switching time, and generally less total delivery time. In terms of plan quality, the new method had smaller optimization objective values, lower normal tissue dose, and generally better target coverage. 
Significance: We have developed a new treatment plan optimization method with direct minimization of NEJ, and demonstrated that this new method outperformed state-of-the-art methods (ES and EM) in both plan quality and delivery efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.