Masonry has superior fire resistance properties stemming from its inert characteristics, and slow degradation of mechanical properties. However, once exposed to fire conditions, masonry undergoes a series of physio-chemical changes. Such changes are often described via temperature-dependent material models. Despite calls for standardization of such models, there is a lack in such standardized models. As a result, available temperature-dependent material models vary across various fire codes and standards. In order to bridge this knowledge gap, this paper presents three methodologies, namely, regression-based, probabilistic-based, and the use of artificial neural (ANN) networks, to derive generalized temperature-dependent material models for masonry with a case study on the compressive strength property. Findings from this paper can be adopted to establish updated temperature-dependent material models of fire design and analysis of masonry structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.