High temperature mechanical property data are needed for evaluating fire resistance of structural members. Being a relatively new construction material, there is a lack of temperature-dependent mechanical property data on ultra-high performance concrete (UHPC). To address this knowledge gap, this paper presents results from an experimental study on the effect of temperature on mechanical properties of UHPC.Specimens made of two UHPC mixes: one with only steel fibers (UHPC-S) and the other with hybrid fibers, that is, both steel and polypropylene (UHPC-H), were tested under different heating conditions in 20 to 750 C temperature range. Compressive strength, tensile strength, stress-strain response, and elastic modulus of UHPC were evaluated at various temperatures. Results generated from these property tests on UHPC were compared with property relations specified in design codes for conventional normal strength concrete (NSC) and high strength concrete (HSC). The comparisons show that UHPC experiences faster degradation in compressive strength and elastic modulus as compared to conventional concrete. However, UHPC exhibits slower degradation in tensile strength and ductility at elevated temperatures due to the presence of steel fibers. Data generated from these property tests were utilized to propose relations for expressing the mechanical properties of UHPC as a function of temperature and these relations can be used as input to numerical models for evaluating fire resistance of structures made of UHPC.
Summary Fire resistance of structural members is dependent on the thermal and mechanical properties of constituent materials and these properties vary as a function of temperature. Currently, there are limited standardized test procedures for evaluating thermal and mechanical properties of construction materials at elevated temperatures. This paper provides a review and assessment of test methods and procedures for evaluating high temperature thermal and mechanical properties of concrete. The drawbacks and variations in currently available test procedures and methods in standards are discussed. Recommendations on the most suitable methods and procedures for measuring thermal and mechanical properties at elevated temperature is presented. In addition, applicability of the proposed high temperature test methods and procedures is illustrated through a case study on conventional concrete specimens. Further, the need for developing standards by organizations such as American Society for Testing and Materials (ASTM), with standardized specifications and test procedures for measuring high temperature properties of construction materials, is laid out.
Summary This paper presents results from an experimental study on residual capacity of fire‐damaged high‐strength concrete (HSC) beams. Four reinforced concrete (RC) beams, fabricated with HSC, were first subject to structural loading and fire exposure with a distinct cooling phase and then loaded to failure upon cooldown to ambient conditions to evaluate residual capacity. Temperatures, deflections, and spalling in the beams were monitored during heating and cooling phases of fire exposure. Further, residual capacity, strains at critical section, and crack patterns (failure mode) of fire‐damaged beams were recorded during residual capacity tests. Results from experiments indicate that the load level during fire exposure, duration of heating phase, rate of cooling, extent (type) of spalling, and duration of postcooling storage influence residual deformations and also residual capacity of RC beams. Further, fire‐damaged HSC beams can recover 40% to 70% of their flexural capacity with respect to their room temperature design capacity provided they survive the entire duration of fire exposure.
Self-compacting concrete (SCC) is a flowable concrete that can flow, fill and pass through congested area of reinforcement without segregation. As a material used in massive constructions, understanding of the effects of elevated temperature exposure on the properties of SCC is vital. The bond between concrete and embedded steel, which degrades with an increase in temperature, influences the load-carrying capacity and thus the fire resistance of reinforced concrete elements. The objective of this study was to evaluate the bond strength of SCC specimens made with fly ash, ground granulated blast-furnace slag (GGBFS) and expanded perlite aggregate (EPA) under elevated temperature exposure. EPA was introduced to enhance the fire endurance of the SCC. Slump flow, J-ring and V-funnel tests were conducted as per EFNARC guidelines to check the rheological characteristics of SCC. Specimens were exposed to elevated temperature following the ISO 834 standard fire curve. Pull-out tests were carried out to determine the bond strength of reference SCC specimens and specimens exposed to elevated temperature. Data from the tests showed that the SCC specimens made with a combination of GGBFS and EPA exhibited improved bond strength, both at room and elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.