Adsorption of Pb(II) and Cd(II) from wastewater utilizing three nano-magnetic materials (Cu0.9Zn0.1Fe2O4, Cu0.8Zn0.2 Fe2O4, and Cu0.7Zn0.3 Fe2O4) were studied. The nano-magnetic materials were prepared from the Cu Frites powder and then the Cu ions were replaced by Zn ions in three concentrations, these materials were characterized by X-ray diffraction (XRD) which has conformed good crystallinity with spinel structure and particle size in the range (26.5�23.9 nm). Artificial neural networks were applying to model the removal of Pb(II) and Cd(II) on three adsorbents from wastewater. The operating conditions that affect on adsorption process are adsorbent dose (0.1, 0.25, and 0.5) g, pH (3, 7, and 9), and contact time (15, 30, and 45) min. Three Multilayered feed-forward neural networks (3:9:2) were successfully used for modeling of removing heavy metals on three adsorbents. The antimicrobial effectiveness of ferrite substances was studied against two types of bacteria. The three adsorbents showed an excellent removal for Cd (II) ions 100% complete removal on Cu0.9Zn0.1 Fe2O4, Cu0.8Zn0.2 Fe2O4, and it was 95% on Cu0.7Zn0.3 Fe2O4, and less removal for Pb (II) ions on Cu0.9Zn0.1Fe2O4, Cu0.8Zn0.2 Fe2O4 were 78.4% and 78.8%, and 83.4% on Cu0.7Zn0.3 Fe2O4. ANN models show efficient simulation with a high correlation coefficient (R2 = 0.99) for all three adsorbents, Sensitivity Analysis demonstrated that pH, time, and a dose of the adsorbent have a strong impact on the process of removal.The results for antimicrobial effectiveness showed that Cu0.9Zn0.1 Fe2O4 had the most antibacterial properties against two types of bacteria and the S. aureus killing rate was less than the E. coli killing rate of all ferrite composite nanoparticles.
In the current study, Pure ZnO and Ag-ZnO nanocomposite are established using the sol-gel method with the influence of ammonia solution NH4OH to incorporate Ag ions into ZnO and form Ag-ZnO nanocomposites. Then pure ZnO and Ag-ZnO nanocomposites were annealed at 450oC for tow h in a muffle furaning using temperture controlling, and heat rate was set at temperature 100oC per min. The structural and morphological properties of samples were characterized using XRD, FTIR, and FESEM with Energy dispersive X-rays (EDX). In addition, the antibacterial activity of pure ZnO and Ag- ZnO nanocomposite was evaluated against gram-positive and gram-negative organisms by plate count test. The results of the test revealed strong antibacterial behavior of nanocomposite against bacteria as compared to pure ZnO and improved efficiency of incorporation Ag ion on ZnO.
Work represents the silver nanoparticles synthesis using green method by adding soluble starch in DMSO solution. The resulting AgNPs-based starch was noted via changing the color from yellow to brownish in aqueous DMSO solution in dark place due to the role of starch in the Ag ions reduction to AgNPs as capping agent in DMSO solvent at temperature 60°C. Then, the AgNPs development was characterized via the (UV-Vis) spectrophotometer. The morphology, structure and polydispersion of AgNPs were determined by using FESEM, XRD and Zeta analyzer, respectively which improved the role of starch in the formation of spherical and flower shapes of AgNPs. Moreover, the antibacterial activity of AgNPs-based starch revealed a strong effect against the positive bacteria than the negative bacteria as compared with the other antibiotic. Besides, these results suggest that the AgNPs prepared by green method can be utilized as efficient antimicrobial agent in the fields of medicine and represented the opportunities for the formation of safe and friendly AgNPs.
In this study, we used green synthesis method in prepared Nano particles. (AgNps) were prepared by the use of plant extract under standard laboratory conditions in clean room in Nano technology and advance materials research centre (NAMRC) /university of technology /Iraq as initial precursor’s silver nitrate with Orange and banana fruit waste (peel). The experimental laboratory used for characterization of Ag Nano particles were XRD, UV-visible and FTIR. Silver Nano particles were tested against several types of bacteria and gave best results versus gram-positive and gram-negative bacterial.
In this research prepared samples of CuZn-ferrites were substation of copper ions by zinc ions as a composition formula Cu 1-x Zn x Fe 2 O 4 ferrite (with x = 0.0, 0.1, 0.2, 0.3) and studying the properties of composition using FTIR spectroscopy established creation of spinel ferrite and presented the features of absorption bands around 561.29-405 cm −1 . X-ray diffraction (XRD) exposed that the structure of these nano particles is spinel and crystallite size lies in the range (12.22-23.9) nm. observed when added zinc ions, found increase in particle size and lattice constant while decrease in Xrd-density, and also have been identified the behavior of material Ferrite in low frequencies permeability magnetic used LCR meter , found when increasing the frequency (1-200) KHz decries in magnetic permeability (μ′) this usual behavior in ferrites and observed a significant increase in magnetic permeability when increasing zinc ions due to the effect of zinc on the internal structure of copper ferrite. At Low frequency institute that the permeability raises with Zn contented rise from (0 -0.3) in Cu-ferrites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.