Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process. In recent times, the most complex task in Software Defined Network (SDN) is security, which is based on a centralized, programmable controller. Therefore, monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment. Consequently, this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms: K-means, Farthest First, Canopy, Density-based algorithm, and Exception-maximization (EM), using the Waikato Environment for Knowledge Analysis (WEKA) software to compare extensively between these five algorithms. Furthermore, this paper presents an SDN-based intrusion detection system using a deep learning (DL) model with the KDD (Knowledge Discovery in Databases) dataset. First, the utilized dataset is clustered into normal and four major attack categories via the clustering process. Then, a deep learning method is projected for building an efficient SDN-based intrusion detection system. The results provide a comprehensive analysis and a flawless reasonable study of different kinds of attacks incorporated in the KDD dataset. Similarly, the outcomes reveal that the proposed deep learning method provides efficient intrusion detection performance compared to existing techniques. For example, the proposed method achieves a detection accuracy of 94.21% for the examined dataset.
<span>In the present article an attempt has been made to predict the occurrences of customers leaving or ‘churning’ a business enterprise and explain the possible causes for the customer churning. Three different algorithms are used to predict churn, viz. decision tree, support vector machine and rough set theory. While two are rule-based learning methods which lead to more interpretable results that might help the marketing division to retain or hasten cross-sell of customers, one of them is a kernel-based classification that separates the customers on a feature hyperplane. The nature of predictions and rules obtained from them are able to provide a choice between a more focused or more extensive program the company may wish to implement as part of its customer retention program.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.