Due to the downscaling in the design of modern ICs, copper interconnects reach their limitations such as delay, power dissipation, and electromigration. However, a new era of discovered materials, including carbon nanotube, graphene nanoribbon (GNR), and their composite, has been proposed as promising alternatives for interconnect applications. The purpose of this review is to give an overview of the various approaches that are used to model graphene-based interconnects. In this work we focus on why opting for graphene-based interconnect properties as an alternative for copper interconnect replacement; what are the deep theories, which are explaining the electrical transport on those interconnects; and what are the electrical models that are used to model the various kind of graphene-based interconnects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.