Various cold-adapted organisms produce antifreeze proteins (AFPs), which prevent the freezing of cell fluids by inhibiting the growth of ice crystals. AFPs are currently being recognized in various organisms, living in extremely low temperatures. AFPs have several important applications in increasing freeze tolerance of plants, maintaining the tissue in frozen conditions and producing cold-hardy plants by applying transgenic technology. Substantial differences in the sequence and structure of the AFPs, pose a challenge for researchers to identify these proteins. In this paper, we proposed a novel method to identify AFPs, using supportive vector machine (SVM) by incorporating 4 types of features. Results of the two used benchmark datasets, revealed the strength of the proposed method in AFP prediction. According to the results of an independent test setup, our method outperformed the current state-of-the-art methods. In addition, the comparison results of the discrimination power of different feature types revealed that physicochemical descriptors are the most contributing features in AFP detection. This method has been implemented as a stand-alone tool, named afpCOOL, for various operating systems to predict AFPs with a user friendly graphical interface.
Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.
Background Angiogenesis inhibition research is a cutting edge area in angiogenesis-dependent disease therapy, especially in cancer therapy. Recently, studies on anti-angiogenic peptides have provided promising results in the field of cancer treatment. Methods A non-redundant dataset of 135 anti-angiogenic peptides (positive instances) and 135 non anti-angiogenic peptides (negative instances) was used in this study. Also, 20% of each class were selected to construct an independent test dataset (see Additional files 1, 2). We proposed an effective machine learning based R package (AntAngioCOOL) to predict anti-angiogenic peptides. We have examined more than 200 different classifiers to build an efficient predictor. Also, more than 17,000 features were extracted to encode the peptides. Results Finally, more than 2000 informative features were selected to train the classifiers for detecting anti-angiogenic peptides. AntAngioCOOL includes three different models that can be selected by the user for different purposes; it is the most sensitive, most specific and most accurate. According to the obtained results AntAngioCOOL can effectively suggest anti-angiogenic peptides; this tool achieved sensitivity of 88%, specificity of 77% and accuracy of 75% on the independent test set. AntAngioCOOL can be accessed at https://cran.r-project.org/ . Conclusions Only 2% of the extracted descriptors were used to build the predictor models. The results revealed that physico-chemical profile is the most important feature type in predicting anti-angiogenic peptides. Also, atomic profile and PseAAC are the other important features. Electronic supplementary material The online version of this article (10.1186/s12967-019-1813-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.