Background
Distinguishing dynamic variations of the climate from the physical urban indicators is a challenge to assess the factors affecting weather severity. Hence, the time-series of the severe weather threat index (SWEAT) were considered in the four urban areas of Turkey and Iran to identify its affecting factors among the climatic variables and urban indicators in 2018. The SWEAT data were obtained from the upper-air sounding database of the University of Wyoming. The climatic variables were extracted from the Asia Pacific data research center (APDRC). The spatial statistics for urban expansion were collected from global human built-up and settlement extent (HBASE) data sets. A quantitative measuring of the Pearson correlation test was used to expose the relationships between dependent index (SWEAT) and independent variables (climatic and anthropogenic).
Results
Results revealed that the high and extreme severity classes of the weather condition in the Ankara, Istanbul, Mashhad, and Tehran are estimated as 7.7% (28 days), 15.3% (56 days), 1.1% (4 days), and 4.4% (16 days), respectively. The strongest values of the annual SWEAT index, exposing the unstable and severe weather conditions, were observed for Istanbul and Ankara urban regions. This result may be corresponding to the highest values of mean annual precipitation and relative humidity in addition to the largest values of urban expansion and sprawl index. The statistical correlation tests in annual scale confirmed the effective role of climatic elements of precipitation, relative humidity, and cloudiness (R from 0.94 to 0.99) and the urban expansion indicators (R from 0.86 to 0.91) in increasing annual severe weather index of SWEAT at above 85–95% of confidence level.
Conclusions
The correlations between the urban expansion indicators and outcome SWEAT index can be strengthened by some climatic elements (e.g., precipitation, humidity, and cloudiness), revealing the mediator and magnifier task. However, the mentioned correlations can be weakened by another climatic variable (i.e., air temperature), revealing a moderator and modifier task. Ultimately, investigation of the weather severity indices (e.g., SWEAT index) could be applied to identify the local and regional evidence of climate change in the urban areas.
Background: Urban sprawl, as an unsustainable urban expansion, relates to direct and indirect impacts on regional climate change in urbanized regions. In this paper, the effect of urban sprawl on regional climate change has been studied using a hybrid factor analysis (FA) and analytical network process (ANP) model in Mashhad city, Iran. The methodology was divided into two main parts based on the identification of 18 urban sprawl characteristics and six climatic parameters during three time-windows of 1996, 2006, and 2016. Results: Based on the FA, a set of chosen sprawl characteristics were reduced into five factors with a maximized total variance of the loading variables and were weighted by ANP super-matrix. Results of urban sprawl index (USI) indicated that Mashhad city had experienced rapid horizontal growth by values from 0.47 to 1.74 within 1996-2016, revealing an indication of unsustainable urban sprawl during the last decades. Based on the correlation test, a positive relation between four climatic parameters (surface temperature, surface long-wave flux, total ozone, and black carbon density) and urban sprawl was observed (R from 0.827 to 0.981). In parallel, a negative relationship between two climatic parameters (total precipitation and convective precipitation) and urban sprawl was estimated (R from − 0.691 to − 0.805).
Conclusions:The result confirmed the possible effects of urban sprawl on climatic variations. This outcome relates to a chain of urban sprawl effects on growth of construction, transportation, the assumption of fuels and subsequently high emission of greenhouse gasses such as ozone concentration, long-wave flux, and carbon density in the urban atmosphere.
Assessment of urban sprawl effects on regional climate change using a hybrid model of factor analysis and analytical network process in the Mashhad city, Iran. Environ Syst Res 8:23.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.