Modeling large nonlinear elastic deformation of elastomers is an important issue for developing new materials. Particularly, this is very promising for design and performance analysis of dielectric elastomers (DEs). These “smart materials” are capable of responding to an external electric field by displaying significant change in shape and size. In this paper, finite element method (FEM) was used to simulate the mechanical behavior of soft elastomers on uniaxial tension. Experimental data from uniaxial tensile tests were used in order to calibrate hyperelastic constitutive models of the material behavior. The constitutive model parameters were evaluated in ABAQUS/CAE. The 3D-model simulation results of a dumbbell shaped specimen at uniaxial tension shows very good correspondence with experimental data.
We developed a theoretical model and an experimental procedure to investigate the rolling friction coefficient in a micro rolling tribosystem. The procedure we suggest is based on the integration of the free oscillation equations of a microball on a spherical surface. The rolling friction coefficient was evaluated on the basis of the number and amplitude of the experimentally determined ball oscillations. The influence of condensing atmospheric water on the rolling friction coefficient at the level of rolling micro tribosystems was also determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.