Prostaglandins (PG) are involved in several female reproductive processes, and their action is regulated at the levels of biosynthesis, catabolism, and signal transduction. Facilitated transport across cell membranes emerges as an additional checkpoint regulating PG action. We have already reported on the influx transporter solute carrier organic anion transporting polypeptide (SLCO2A1) [PG transporter (PGT)] in relation to PG action in the bovine endometrium. In the present study, we report on the functional expression and regulation of multidrug resistance-associated protein 4 (MRP4)/ATP-binding cassette carrier 4, an alternate PG transporter belonging to the ATP-binding cassette carrier (ABC) family. We have found that MRP4 protein was present throughout the estrous cycle and exhibited a pattern of expression similar to that of PGT with maximal expression during early-mid luteal phase in the bovine endometrium. Functional expression and regulation of MRP4 was studied in vitro using the newly developed bovine endometrial epithelial bEEL and stromal CSC cell lines. Oxytocin (OT) stimulated PGF2α production and MRP4 mRNA and protein in a time- and dose-dependent manner but had no effect on PGT. OT induced preferred accumulation of PG outside the cells and secretion toward the basolateral side of polarized bEEL cells grown on membrane inserts. MK-571 and indomethacin, two documented inhibitors of MRP4 activity, blocked preferred accumulation of PG, but interferon-τ and NS-398 had no effect on MRP4 expression or the direction of PG transport. Our results suggest that MRP4 is a functional PG carrier under the regulation of OT in the bovine endometrium.
Interferon-tau (IFNtau) is the embryonic signal responsible for pregnancy recognition in ruminants. The primary action of IFNtau is believed to be mediated through inhibition of prostaglandin F(2alpha) (PGF(2alpha)) released from the endometrial epithelial cells in response to oxytocin (OT). Our working hypothesis was that the antiluteolytic effect of IFNtau also involved modulation of PG production downstream of OT receptor (OTR) and/or cyclooxygenase 2 (COX2). There is currently no OT-sensitive endometrial cell line to study the molecular mechanisms underlying our hypotheses. Therefore, we established an immortalized bovine endometrial epithelial cell line (bEEL) exhibiting OT response. These cells were cytokeratin positive, expressed steroid receptors, and exhibited preferential accumulation of PGF(2alpha) over PGE(2). The bEEL cells were highly sensitive to OT, showing time- and concentration-dependent increase in COX2 transcript and protein and PGF(2alpha) accumulation. Interestingly, IFNtau (20 ng/ml) significantly reduced OT-induced PGF(2alpha) accumulation, but surprisingly, the effect was not mediated through down-regulation of either OTR or COX2. Rather, IFNtau up-regulated COX2 in a time- and concentration-dependent manner while decreasing OT-induced PG accumulation. This suggests that COX2 is not a primary target for the antiluteolytic effect of IFNtau. Because IFNtau reduced OT-stimulated PGF(2alpha) accumulation within 3 h, the mechanism likely involves a direct interference at the level of the OT signaling or transcription in addition to the down-regulation of OTR observed in vivo. In summary, bEEL cells offer a unique in vitro model for investigating the cellular and molecular mechanisms underlying OT and IFNtau response in relation with luteolysis and recognition of pregnancy in the bovine.
Oxytocin (OT) triggers the luteolytic pulses of prostaglandin F(2 alpha) (PGF(2 alpha)) from the endometrial epithelial cells in ruminants. We have proposed that the embryonic signal interferon-tau exerts its antiluteolytic effect by disrupting the OT signaling axis. Accordingly, we have attempted to define the signaling pathway of OT-induced PGF(2 alpha) production in the bovine endometrium using our newly characterized epithelial cell line (bEEL). OT receptor was coupled to the classical G alpha(q) pathway as evidenced by calcium release and activation of phospholipase C. Similarly, OT-induced PGF(2 alpha) production was mediated through the canonical ERK1/2 pathway. Because of the importance of receptor and nonreceptor tyrosine kinases in G protein-coupled receptor signaling, we studied the role of epidermal growth factor receptor (EGFR), c-Src, and phosphoinositide 3-kinase (PI3K) on OT-induced PGF(2 alpha) production in association with cyclooxygenase 2 (COX2) expression and ERK1/2 and Akt phosphorylation. The EGFR inhibitor AG1478 (10 microm) nearly abolished basal and OT-induced PGF(2 alpha) production and down-regulated COX2 expression and ERK1/2 phosphorylation. Because the transactivated EGFR can serve as a ligand for the signaling proteins with Src homology 2 (SH2) domain, we hypothesized a role for c-Src and PI3K in OT-induced PGF(2 alpha) production. Inhibitors of c-Src (PP2, 10 microm) and PI3K (LY294002, 25 microm) produced a significant decrease in OT-induced PGF(2 alpha) production and reduced COX2 expression. Also, PP2, but not LY294002, decreased OT-induced ERK1/2 phosphorylation. Because LY294002 did not affect ERK1/2 phosphorylation, but inhibited PGF(2 alpha) production and down-regulated COX2 expression, it is likely that the Akt pathway is also involved in PGF(2 alpha) production. Thus, EGFR may simultaneously activate c-Src and PI3K to amplify the OT signaling to increase the output of PGF(2 alpha) in bEEL cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.