As micronuclei (MN) derive from chromosomal fragments and whole chromosomes lagging behind in anaphase, the MN assay can be used to show both clastogenic and aneugenic effects. The distinction between these phenomena is important, since the exposure studied often induces only one type of MN. This particularly concerns the use of MN as a biomarker of genotoxic exposure and effects, where differences in MN frequencies between exposed subjects and referents are expected to be small. A specific analysis of the induced type of MN may considerably improve the sensitivity of detecting the exposure effect. MN harbouring chromosomes can be distinguished from those harbouring acentric fragments by the presence of a centromere. The proportion of centromere-positive MN in human lymphocytes increases with age, which primarily reflects an age-dependent micronucleation of the X and Y chromosomes. The X chromosome especially tends to lag behind in female lymphocyte anaphase, being micronucleated more efficiently than autosomes. There is some evidence for an enhanced prevalence of fragments from chromosome 9 in spontaneous human lymphocyte MN and from chromosomes 1, 9 or 16 in MN induced in vitro by some clastogens; the breakage appears to occur in the heterochromatic block of these chromosomes. Although there are indications that centromere identification can improve the detection of clastogenic effects in humans in vivo, smokers have not shown an increase in centromere-negative MN in their cultured lymphocytes, although smoking is known to produce chromosomal aberrations. This may suggest that fragment-containing MN and chromosomal aberrations cover partly different phenomena. Understanding the mechanistic origin and contents of MN is essential for the proper use of this cytogenetic end-point in biomarker studies, genotoxicity testing and risk assessment.
The in-vitro genotoxicity of nanosized TiO2 rutile and anatase was assessed in comparison with fine TiO2 rutile in human bronchial epithelial BEAS 2B cells using the single-cell gel electrophoresis (comet) assay and the cytokinesis-block micronucleus test. BEAS 2B cells were exposed to eight doses (1—100 μg/cm2) of titanium(IV) oxide nanosized rutile (>95%, <5% amorphous SiO2 coating; 10 × 40 nm), nanosized anatase (99.7%; <25 nm), or fine rutile (99.9%; <5 μm) for 24, 48, and 72 h. Fine rutile reduced cell viability at lower doses than nanosized anatase, which was more cytotoxic than nanosized rutile. In the comet assay, nanosized anatase and fine rutile induced DNA damage at several doses with all treatment times. Dose-dependent effects were seen after the 48- and 72-h treatments with nanosized anatase and after the 24-, 48- (in one out of two experiments), and 72-h treatments (one experiment) with fine rutile. The lowest doses inducing DNA damage were 1 μg/cm2 for fine rutile and 10 μg/cm 2 for nanosized anatase. Nanosized rutile showed a significant induction in DNA damage only at 80 μg/cm2 in the 24-h treatment and at 80 and 100 μg/ cm2 in the 72-h treatment (with a dose-dependent effect). Only nanosized anatase could elevate the frequency of micronucleated BEAS 2B cells, producing a significant increase at 10 and 60 μg/cm 2 after the 72-h treatment (no dose-dependency). At increasing doses of all the particles, MN analysis became difficult due to the presence of TiO2 on the microscopic slides. In conclusion, our studies in human bronchial epithelial BEAS 2B cells showed that uncoated nanosized anatase TiO2 and fine rutile TiO2 are more efficient than SiO 2-coated nanosized rutile TiO2 in inducing DNA damage, whereas only nanosized anatase is able to slightly induce micronuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.