Biochar as a stable carbon-rich material shows incredible potential to handle water/wastewater contaminants. Its application is gaining increasing interest due to the availability of feedstock, the simplicity of the preparation methods, and their enhanced physico-chemical properties. The efficacy of biochar to remove organic and inorganic pollutants depends on its surface area, pore size distribution, surface functional groups, and the size of the molecules to be removed, while the physical architecture and surface properties of biochar depend on the nature of feedstock and the preparation method/conditions. For instance, pyrolysis at high temperatures generally produces hydrophobic biochars with higher surface area and micropore volume, allowing it to be more suitable for organic contaminants sorption, whereas biochars produced at low temperatures own smaller pore size, lower surface area, and higher oxygen-containing functional groups and are more suitable to remove inorganic contaminants. In the field of water/wastewater treatment, biochar can have extensive application prospects. Biochar have been widely used as an additive/support media during anaerobic digestion and as filter media for the removal of suspended matter, heavy metals and pathogens. Biochar was also tested for its efficiency as a support-based catalyst for the degradation of dyes and recalcitrant contaminants. The current review discusses on the different methods for biochar production and provides an overview of current applications of biochar in wastewater treatment.
In the present study a new combined process, comprising filtration of raw olive mill wastewater (OMWW) on two successive olive stone (OS) filters followed by a coagulation-flocculation, was developed in order to perform an efficient pretreatment of OMWW. The results show that the use of OS filter leads to a higher removal of total suspended solids (TSS) and fatty matter (FM) from the raw OMWW (about 82.5% and 73.8%, respectively) and a depletion of total phenolic compounds (TP) and chemical oxygen demand (COD) (11.3% and 23.2%, respectively). The coagulation-flocculation was then applied to improve the removal of TP and COD from the filtered OMWW. For this purpose, a full-factorial design was used to study the effect of different factors involved in coagulation-flocculation. The studied variables were: pH (5-8), coagulant type (ferric chloride; FC and aluminum sulfate; AS), coagulant concentration (250-1000 mg/L) and flocculant (Anionique polyelectrolyte Superfloc A120 PWG) concentration (1-5 mg/L). The results reveal that the use of 250 mg/L FC and 5 mg/L flocculant at an acid pH (around 5) allows for, respectively, a removal of TP and COD of about 10.8% and 31.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.