A novel structure for chronically implantable cortical electrodes using polyimide bio-polymer was devised, which provides both flexibility for micro-motion compliance between brain tissues and the skull and at the brain/implant interface and stiffness for better surgical handling. A 5–10 µm thick silicon backbone layer was attached to the tip of the electrode to enhance the structural stiffness. This stiff segment was then followed by a 1 mm flexible segment without a silicon backbone layer. The fabricated implants have tri-shanks with five recording sites (20 µm × 20 µm) and two vias of 40 µm × 40 µm on each shank. In vitro cytotoxicity tests of prototype implants revealed no adverse toxic effects on cells. Bench test impedance values were assessed, resulting in an average impedance value of ∼2 MΩ at 1 KHz. For a 5 µm thick silicon backbone electrode, the stiffness of polyimide-based electrodes was increased ten times over that of electrodes without the silicon backbone layer. Furthermore, polyimide-based electrodes with 5 µm and 10 µm thick silicon backbone layer penetrated pia of rat brain without buckling that has been observed in implants without silicon reinforcement.
Recent efforts in our laboratory have focused on developing methods for immobilizing bioactive peptides to low cell-adhesive dextran monolayer coatings and promoting biospecific cell adhesion for biomaterial implant applications. In the current study, this dextran-based bioactive coating technology was developed for silicon, polyimide, and gold, the base materials utilized to fabricate our prototype neural implants. Chemical composition of all modified surfaces was verified by X-ray photoelectron spectroscopy (XPS). We observed that surface-immobilized dextran supported very little cell adhesion in vitro (24-h incubation with serum-supplemented medium) on all base materials. Inactive nonadhesion-promoting Gly-Arg-Ala-Asp-Ser-Pro peptides immobilized on dextran-coated materials promoted adhesion and spreading at low levels not significantly different from dextran-coated substrates. Arg-Gly-Asp (RGD) peptide-grafted surfaces were observed to promote substantial fibroblast and glial cell adhesion with minimal PC12 (neuronal cell) adhesion. In contrast, dextran-coated materials with surface-grafted laminin-based, neurite-promoting Ile-Lys-Val-Ala-Val (IKVAV) peptide promoted substantial neuron cell adhesion and minimal fibroblast and glial cell adhesion. It was concluded that neuron-selective substrates are feasible using dextran-based surface chemistry strategies. The chemical surface modifications could be utilized to establish a stable neural tissue-implant interface for longterm performance of neural prosthetic devices.
gamma-Aminobutyric acid (GABA) is one of two main inhibitory neurotransmitters in the central nervous system that plays an important role in neuronal function and dysfunction. Immobilization of GABA molecules on a rigid surface in an ordered fashion will provide an opportunity to understand some of the fundamental properties related to its structure and function. In this study, we report a novel strategy for immobilization of bioactive GABA on gold substrate. GABA was immobilized in three consecutive steps, namely gold substrate amination, dextran covalent attachment, and GABA immobilization. Surface chemistry was verified at each step using XPS and FTIR. Bioactivity of GABA immobilized on the gold surface was studied using atomic force microscopy to reveal antigen-antibody binding. Nonspecific protein adsorption on the bioactive surface was analyzed quantitatively using anti-GABA antibody and an enzyme linked nonspecific anti-immunoglobulin-G antibody in an ELISA assay. GABA functionalized surface has high affinity for anti-GABA, while showing significantly low affinity for nonspecific anti-IgG antibody. All these data support the presence of a bio-functional immobilized GABA on the gold surface. In conclusion, we report a novel technique for immobilizing bioactive GABA molecules in an orderly fashion on gold substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.