In this study, a detailed topological charge density analysis based on the quantum theory of atoms in molecules (QTAIM) developed by Bader and co-workers, has been accomplished (using the B3LYP method) on the CB62 anion and three planar isomers of the C3B4 species, which had been first proposed by Exner and Schleyer as examples of molecules containing hexacoordinate carbon atoms. The analysis uncovers the strong (covalent) interactions of boron atoms as well as the "nondirectional" interaction of central carbon atom with those peripheral atoms. On the other hand, instabilities have been found in the topological networks of (B6C)2 and B4C3(para) species. A detailed investigation of these instabilities demonstrates that the topology of charge density has a floppy nature near the equilibrium geometries of the species under study. Thus, these species seems to be best described as complexes of a relatively concrete ring containing boron or carbon atoms and a central carbon atom that is confined in the plane of the molecule, but with nondirectional interactions with the surrounding atoms.Key words: hypervalency, hexacoordinate carbon, quantum theory of atoms in molecules, charge density analysis, ab initio methods.
A multi-walled carbon nanotube–ionic liquid nanocomposite was fabricated for the electrochemical detection of perphenazine, suitable for the analysis of pharmaceuticals and blood serum samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.