The effects of polyvinylchloride (PVC) and samarium oxide-polyvinylchloride (PVC: Sm2O3) polymer interlayers on the electrical characteristics in detail. The fabricated reference sample Au/n-Si, Au/PVC/n-Si, and Au/(PVC: Sm2O3)/n-Si were named as Metal-Semiconductor (MS), Metal-Polymer-Semiconductor (MPS1), and MPS2 structure, respectively. The procedure of providing Sm2O3 is also described in detail. XRD, FE-SEM), EDX, and UV–vis spectroscopy, have been applied to study the mean crystalline structure, morphology, elemental characterization, and optical features of the provided Sm2O3. After structural analysis, the I-V features were performed in the wide range voltage (±3.5 V), and then, the basic electronic parameters of these structures were extracted from various techniques and compared with each other. Experimental results show that (PVC: Sm2O3) leads to an increase of barrier-height (BH), rectifying-rate
shunt-resistance (R
sh
), and decrease of ideality-factor (n), surface-states (N
ss
). The RR of the MPS2 structure was found 117 times higher than the MS structure. The energy-dependent profile of N
ss
was also obtained from the forward bias I–V data by considering voltage-dependent n and BH. The plots reverse-bias
characteristics show that Schottky-emission (SE) type conduction mechanism is effective for MS structure, whereas Poole-Frenkel-emission (PFE) is effective for MPS structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.