Hybrid networks that build upon convolutional layers with attention mechanisms have demonstrated improved performance relative to pure convolutional networks across many regulatory genome analysis tasks. Their inductive bias to learn long-range interactions provides an avenue to identify learned motif-motif interactions. For attention maps to be interpretable, the convolutional layer(s) must learn identifiable motifs. Here we systematically investigate the extent that architectural choices in convolution-based hybrid networks influence learned motif representations in first layer filters, as well as the reliability of their attribution maps generated by saliency analysis. We find that design principles previously identified in standard convolutional networks also generalize to hybrid networks. This work provides an avenue to narrow the spectrum of architectural choices when designing hybrid networks such that they are amenable to commonly used interpretability methods in genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.