The paired sample t-test for testing the difference between two means in paired data is not robust against the violation of the normality assumption. In this paper, some alternative robust tests have been suggested by using the bootstrap method in addition to combining the bootstrap method with the W.M test. Monte Carlo simulation experiments were employed to study the performance of the test statistics of each of these three tests depending on type one error rates and the power rates of the test statistics. The three tests have been applied on different sample sizes generated from three distributions represented by Bivariate normal distribution, Bivariate contaminated normal distribution, and the Bivariate Exponential distribution.
The paired sample t-test is a type of classical test statistics that is used to test the difference between two means in paired data, but it is not robust against the violation of the normality assumption. In this paper, some alternative robust tests are suggested by combining the Jackknife resampling with each of the Wilcoxon signed-rank test for small sample size and Wilcoxon signed-rank test for large sample size, using normal approximation. The Monte Carlo simulation experiments were employed to study the performance of the test statistics of each of these tests depending on the type one error rates and the power rates of the test statistics. All these tests were applied on different sample sizes generated from three distributions, represented by Bivariate normal distribution, contaminated Bivariate normal distribution, and Bivariate exponential distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.