Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.
Sugarcane, not only fulfills 70% of world sugar needs but is also a prime potential source of bioethanol. It is majorly grown in tropical and subtropical regions. Researchers have improved this grass to great extent and have developed energy cane with ability to accumulate up to 18% sucrose in its Culm. Improvement of this crop is impeded by its complex genome, low fertility, long production cycle and susceptibility to various biotic and abiotic stresses. Biotechnological interventions hold great promise to address these impediments paving way to get improved sugarcane crop. Further, being vegetatively propagated in most of the agroecological regions, it has become more attractive plant to work with. This chapter highlights, how advanced knowledge of omics (genomics, transcriptomics, proteomics and metabolomics) can be employed to improve sugarcane crop. In addition, potential role of in vitro techniques and transgenic technology has also been discussed for developing improved sugarcane clones with enhanced sugar recovery.
Plant tissue culture technique employed for the identification and isolation of bioactive phytocompounds has numerous industrial applications. It provides potential benefits for different industries which include food, pharmaceutical and cosmetics. Various agronomic crops i.e., cereals, fruits, vegetables, ornamental plants and forest trees are currently being used for in vitro propagation. Plant tissue culture coupled with biotechnological approaches leads towards sustainable agricultural development providing solutions to major food security issues. Plants are the rich source of phytochemicals with medicinal properties rendering them useful for the industrial production of pharmaceuticals and nutraceuticals. Furthermore, there are numerous plant compounds with application in the cosmetics industry. In addition to having moisturizing, anti‐ageing, anti‐wrinkle effects; plant-derived compounds also possess pharmacological properties such as antiviral, antimicrobial, antifungal, anticancer, antioxidant, anti-inflammatory, and anti-allergy characteristics. The in vitro propagation of industrially significant flora is gaining attention because of its several advantages over conventional plant propagation methods. One of the major advantages of this technique is the quick availability of food throughout the year, irrespective of the growing season, thus opening new opportunities to the producers and farmers. The sterile or endangered flora can also be conserved by plant micro propagation methods. Hence, plant tissue culture is an extremely efficient and cost-effective technique for biosynthetic studies and bio-production, biotransformation, or bioconversion of plant-derived compounds. However, there are certain limitations of in-vitro plant regeneration system including difficulties with continuous operation, product removal, and aseptic conditions. For sustainable industrial applications of in-vitro regenerated plants on a large scale, these constraints need to be addressed in future studies.
A chimeric Bacillus thuringiensis toxin (Bt) gene, cry2AX1was cloned in a bi-selectable marker free binary vector construct. The cry2AX1 gene, driven by the Chrysanthemum rbcS1 promoter, was introduced into JK1044R, the restorer line (Oryza sativa L. ssp. Indica) of a notified commercially grown rice hybrid in India, by Agrobacterium-mediated transformation. Its effect against two major lepidopteran insect pests viz., yellow stem borer (YSB) Scirpophaga incertulas, rice leaf folder (RLF) Cnaphalocrocis medinalis and one minor insect pest, oriental army worm (OAW) Mythimna separata was demonstrated through bioassays of transgenic rice plants under laboratory and greenhouse conditions. The rbcS1 promoter with chloroplast signal peptide was used to avoid Cry2AX1 protein expression in rice seed endosperm tissue. A total of 37 independent transformants were generated, of which after preliminary molecular characterization and YSB bioassay screening, five events were selected for their protein expression and bioefficacy against all three rice insect. One elite transgenic rice line, BtE15, was identified with Cry2AX1 expression ranging from 0.68 to 1.34 µg g(-1) leaf fresh weight and with 80-92 % levels of resistance against rice pests at the vegetative and reproductive stages. Increase in Cry2AX1 protein concentration was also observed with crop maturity. The Cry2AX1protein concentration in the de-husked seeds was negligible (as low as 2.7-3.6 ng g(-1)). These results indicate the potential application of cry2AX1 gene in rice for protection against YSB, RLF and OAW.
Transgenic technology played a crucial role in developing insect-resistant plants resulting in the reduced application of pesticides. This article reports the expression of two cry proteins (Cry3Bb1 and Cry3) in cotton for enhanced resistance against chewing insect pests. The aforementioned genes were synthetically developed and were cloned under appropriate regulatory sequences followed by transformation into Eagle-2 genotype (Gossypium hirsutum) of cotton through shoot apex-cut Agro-infiltration. The transgene integration was validated by polymerase chain reaction using primers flanking the aforementioned cry genes. Transgene expression was assessed by qRT-PCR using GADPH as a reference gene. The relative fold expression analyses revealed the highest expression of the transgene(s) in M1 plants, which is a 4.5-fold expression (Cry3 + Cry3Bb1) followed by M3 (fold expression, 3.0) (Cry3Bb1) and M2 (fold expression, 2.5) (Cry3) transformants of cotton. The confirmed transgenic plants were exposed to insect pests, pink bollworm (Pectinophora gossypiella), and army bollworm (Helicoverpa armigera). Bioassay results revealed that 60% mortality was observed against pink bollworm, and 75% mortality was observed against army bollworm in transgenic plants containing both Cry3Bb1 and Cry3 genes (M1 transgenic plants). In M2 transgenic plants containing only the Cry3Bb1 gene, the mortality was observed to be 40% in the pink bollworm population, whereas 45% mortality was observed in the army bollworm population. In the case of M3 transgenic plants containing single gene-Cry3, the mortality was 20% in the pink bollworm population, whereas 30% mortality was observed in the army bollworm population. Almost no mortality was observed in non-transgenic Eagle-2 control plants. Hence, the developed cotton transformants have improved resistance against chewing insect pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.