Human infertility is considered as a serious disease of the reproductive system that affects more than 10% of couples across the globe and over 30% of the reported cases are related to men. The crucial step in the assessment of male infertility and subfertility is semen analysis that strongly depends on the sperm head morphology, i.e., the shape and size of the head of a spermatozoon. However, in medical diagnosis, the morphology of the sperm head is determined manually, and heavily depends on the expertise of the clinician. Moreover, this assessment as well as the morphological classification of human sperm heads are laborious and non-repeatable, and there is also a high degree of inter and intra-laboratory variability in the results. In order to overcome these problems, we propose a specialized convolutional neural network (CNN) architecture to accurately classify human sperm heads based on sperm images. It is carefully designed with several layers, and multiple filter sizes, but fewer filters and parameters to improve efficiency and effectiveness. It is demonstrated that our proposed architecture outperforms state-of-the-art methods, exhibiting 88% recall on the SCIAN dataset in the total agreement setting and 95% recall on the HuSHeM dataset for the classification of human sperm heads. Our proposed method shows the potential of deep learning to surpass embryologists in terms of reliability, throughput, and accuracy.
In machine learning, sentiment analysis is a technique to find and analyze the sentiments hidden in the text. For sentiment analysis, annotated data is a basic requirement. Generally, this data is manually annotated. Manual annotation is time consuming, costly and laborious process. To overcome these resource constraints this research has proposed a fully automated annotation technique for aspect level sentiment analysis. Dataset is created from the reviews of ten most popular songs on YouTube. Reviews of five aspects-voice, video, music, lyrics and song, are extracted. An N-Gram based technique is proposed. Complete dataset consists of 369436 reviews that took 173.53 s to annotate using the proposed technique while this dataset might have taken approximately 2.07 million seconds (575 h) if it was annotated manually. For the validation of the proposed technique, a sub-dataset-Voice, is annotated manually as well as with the proposed technique. Cohen's Kappa statistics is used to evaluate the degree of agreement between the two annotations. The high Kappa value (i.e., 0.9571%) shows the high level of agreement between the two. This validates that the quality of annotation of the proposed technique is as good as manual annotation even with far less computational cost. This research also contributes in consolidating the guidelines for the manual annotation process.
Skin cancer (melanoma) is one of the most aggressive of the cancers and the prevalence has significantly increased due to increased exposure to ultraviolet radiation. Therefore, timely detection and management of the lesion is a critical consideration in order to improve lifestyle and reduce mortality. To this end, we have designed, implemented and analyzed a hybrid approach entailing convolutional neural networks (CNN) and local binary patterns (LBP). The experiments have been performed on publicly accessible datasets ISIC 2017, 2018 and 2019 (HAM10000) with data augmentation for in-distribution generalization. As a novel contribution, the CNN architecture is enhanced with an intelligible layer, LBP, that extracts the pertinent visual patterns. Classification of Basal Cell Carcinoma, Actinic Keratosis, Melanoma and Squamous Cell Carcinoma has been evaluated on 8035 and 3494 cases for training and testing, respectively. Experimental outcomes with cross-validation depict a plausible performance with an average accuracy of 97.29%, sensitivity of 95.63% and specificity of 97.90%. Hence, the proposed approach can be used in research and clinical settings to provide second opinions, closely approximating experts' intuition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.