Mesoporous silicon nanofibers (m-SiNFs) have been fabricated using a simple and scalable method via electrospinning and reduction with magnesium. The prepared m-SiNFs have a unique structure in which clusters of the primary Si nanoparticles interconnect to form a secondary three-dimensional mesoporous structure. Although only a few nanosized primary Si particles lead to faster electronic and Li(+) ion diffusion compared to tens of nanosized Si, the secondary nanofiber structure (a few micrometers in length) results in the uniform distribution of the nanoparticles, allowing for the easy fabrication of electrodes. Moreover, these m-SiNFs exhibit impressive electrochemical characteristics when used as the anode materials in lithium ion batteries (LIBs). These include a high reversible capacity of 2846.7 mAh g(-1) at a current density of 0.1 A g(-1), a stable capacity retention of 89.4% at a 1 C rate (2 A g(-1)) for 100 cycles, and a rate capability of 1214.0 mAh g(-1) (at 18 C rate for a discharge time of ∼3 min).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.