Statistical Static Timing Analysis has received wide attention recently and emerged as a viable technique for manufacturability analysis. To be useful, however, it is important that the error introduced in SSTA be significantly smaller than the manufacturing variations being modeled. Achieving such accuracy requires careful attention to the delay models and to the algorithms applied. In this paper, we propose a new sparse-matrix based framework for accurate path-based SSTA, motivated by the observation that the number of timing paths in practice is sub-quadratic based on a study of industrial circuits and the ISCAS89 benchmarks. Our sparse-matrix based formulation has the following advantages: (a) It places no restrictions on process parameter distributions; (b) It embeds accurate polynomial-based delay model which takes into account slope propagation naturally; (c) It takes advantage of the matrix sparsity and high performance linear algebra for efficient implementation. Our experimental results are very promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.