Based on the well-established biopotential theory, we hypothesize that the high frequency spectral information, like that higher than 100Hz, of the EEG signal recorded in the off-the-shelf EEG sensor contains muscle tone information. We show that an existing automatic sleep stage annotation algorithm can be improved by taking this information into account. This result suggests that if possible, we should sample the EEG signal with a high sampling rate, and preserve as much spectral information as possible.
Study Objectives: Polysomnography is the gold standard in identifying sleep stages; however, there are discrepancies in how technicians use the standards. Because organizing meetings to evaluate this discrepancy and/or reach a consensus among multiple sleep centers is time-consuming, we developed an artificial intelligence system to efficiently evaluate the reliability and consistency of sleep scoring and hence the sleep center quality. Methods: An interpretable machine learning algorithm was used to evaluate the interrater reliability (IRR) of sleep stage annotation among sleep centers. The artificial intelligence system was trained to learn raters from 1 hospital and was applied to patients from the same or other hospitals. The results were compared with the experts' annotation to determine IRR. Intracenter and intercenter assessments were conducted on 679 patients without sleep apnea from 6 sleep centers in Taiwan. Centers with potential quality issues were identified by the estimated IRR. Results: In the intracenter assessment, the median accuracy ranged from 80.3%-83.3%, with the exception of 1 hospital, which had an accuracy of 72.3%. In the intercenter assessment, the median accuracy ranged from 75.7%-83.3% when the 1 hospital was excluded from testing and training. The performance of the proposed method was higher for the N2, awake, and REM sleep stages than for the N1 and N3 stages. The significant IRR discrepancy of the 1 hospital suggested a quality issue. This quality issue was confirmed by the physicians in charge of the 1 hospital. Conclusions: The proposed artificial intelligence system proved effective in assessing IRR and hence the sleep center quality.
We propose a novel unsupervised approach for sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools. Specifically, we apply diffusion-based algorithms, diffusion map (DM), and alternating diffusion (AD) algorithms, to reconstruct the intrinsic geometry of sleep dynamics by reorganizing the spectral information of an electroencephalogram (EEG) extracted from a nonlinear-type time frequency analysis tool, the synchrosqueezing transform (SST). The visualization is achieved by the nonlinear dimension reduction properties of DM and AD. Moreover, the reconstructed nonlinear geometric structure of the sleep dynamics allows us to achieve the automatic annotation purpose. The hidden Markov model is trained to predict the sleep stage. The prediction performance is validated on a publicly available benchmark database, Physionet Sleep-EDF [extended] SC * and ST * , with the leave-one-subject-out cross-validation. The overall accuracy and macro F1 achieve 82.57% and 76% in Sleep-EDF SC * and 77.01% and 71.53% in Sleep-EDF ST * , which is compatible with the state-of-the-art results by supervised learning-based algorithms. The results suggest the potential of the proposed algorithm for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.