The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.
In this paper, we present the first microfluidic junctions for droplet generation directly engraved on lithium niobate crystals by micromachining techniques, preparatory to a fully integrated opto-microfluidics lab-on-chip system. In particular, laser ablation technique and the mechanical micromachining technique are exploited to realise microfluidic channels in T- and cross junction configurations. The quality of both lateral and bottom surfaces of the channels are therefore compared together with a detailed study of their roughness measured by means of atomic force microscopy in order to evaluate the final performance achievable in an optofluidic device. Finally, the microfluidics performances of these water-in-oil droplets generators are investigated depending on these micromachining techniques, with particular focus on a wide range of droplet generation rates.
A short description of the muon tomography demonstrator at the INFN Laboratori Nazionali di Legnaro near Padua, Italy, is given and the principal achievements owing to the data collected at that experimental facility are presented. In particular, the feasibility studies for several applications based on the muon-tomographic technology, within national and European projects, are discussed. The experimental problems and the procedures used to improve the performance are underlined. In addition, new activities and the related detector optimization are illustrated.
This article is part of the Theo Murphy meeting issue ‘Cosmic-ray muography’.
In micro-analytical chemistry and biology applications, optofluidic technology holds great promise for creating efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. Therefore, in this work the possibility of integrating opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. In particular, a T-junction droplet generator is directly engraved in a LiNbO3 substrate by means of laser ablation process and optical waveguides are realized in the same material by exploiting the Titanium in-diffusion approach. The coupling of these two stages as well as the realization of holographic gratings in the same substrate will allow creating new compact optical sensor prototypes, where the optical properties of the droplets constituents can be monitored
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.