Inhaled corticosteroid-containing medications reduce the frequency of COPD exacerbations (mainly infectious in origin) while paradoxically increasing the risk of other respiratory infections The aim was to determine the effects of inhaled corticosteroids on airway microbial load in COPD patients and evaluate the influence of the underlying inflammatory profile on airway colonisation and microbiome.This is a proof-of-concept prospective, randomised, open-label, blinded endpoint study. Sixty patients with stable moderate COPD were randomised to receive one inhalation twice daily of either a combination of salmeterol 50 μg plus fluticasone propionate 500 μg or salmeterol 50 μg for 12 months. The primary outcome was the change of sputum bacterial loads over the course of treatment.Compared with salmeterol, 1-year treatment with salmeterol plus fluticasone was associated with a significant increase in sputum bacterial load (p=0.005), modification of sputum microbial composition and increased airway load of potentially pathogenic bacteria. The increased bacterial load was observed only in inhaled corticosteroid-treated patients with lower baseline sputum or blood eosinophil (≤2%) levels but not in patients with higher baseline eosinophils.Long-term inhaled corticosteroid treatment affects bacterial load in stable COPD. Lower eosinophil counts are associated with increased airway bacterial load.
Background. Inhalation of thermal water with antioxidant properties is empirically used for COPD. Aims. To evaluate the effects of sulphurous thermal water (reducing agents) on airway oxidant stress and clinical outcomes in COPD. Methods. Forty moderate-to-severe COPD patients were randomly assigned to receive 12-day inhalation with sulphurous thermal water or isotonic saline. Patients were assessed for superoxide anion (O2
−) production in the exhaled breath condensate and clinical outcomes at recruitment, the day after the conclusion of the 12-day inhalation treatment, and one month after the end of the inhalation treatment. Results. Inhalation of reducing agents resulted in a significant reduction of O2
− production in exhaled breath condensate of COPD patients at the end of the inhalatory treatment and at followup compared to baseline. A significant improvement in the COPD assessment test (CAT) questionnaire was shown one month after the end of the inhalatory treatment only in patients receiving sulphurous water. Conclusion. Thermal water inhalation produced an in vivo antioxidant effect and improvement in health status in COPD patients. Larger studies are required in order to evaluate whether inhalation of thermal water is able to modify relevant clinical outcomes of the disease (the study was registered at clinicaltrial.gov—identifier: NCT01664767).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.