Food shortage, along with biotic stressors, contributes to winter honey bee colony losses. In autumn, to support honey bee colonies and prepare them for the winter season, beekeepers can supply homemade syrups which could contain compounds with possible negative side effects. In this study, we investigated the toxicity of one of those compounds (e.g., hydroxymethylfurfural, HMF) at doses consistent with literature data both to healthy bees and bees challenged with their most important parasite (i.e., Varroa destructor ). To strengthen available data on HMF concentration in sugar syrups, we also investigated HMF formation in homemade 2:1 inverted sugar syrup, considering, in particular, the influence of temperature or boiling time on different homemade sugar syrups according to their acidity. Finally, we studied the effects of the acidity of sugar syrups on honeybee survival, and tested whether or not sucrose inversion through acidification is really necessary. We show that doses of HMF similar to those reported as sublethal in the literature appear to be non-toxic even to mite infested bees. However, the amount of HMF that can be found in homemade syrups, which increases with temperature and acidity, can be much higher and can cause significant bee mortality. Moreover, we highlighted the detrimental effect of syrups acidity on honeybee survival, suggesting that the addition of lemon or any other acidifying substance to invert the sucrose could be harmful and not necessary. Our results suggest a responsible approach to homemade colony nutrition. honey bee / hydroxymethylfurfural / nutrition / sugar syrup acidity
The little known fairyfly (Hymenoptera, Mymaridae), Platystethynium (Platystethynium) triclavatum (Donev & Huber, 2002), comb. n. from Pseudocleruchus Donev & Huber, 2002, is newly recorded as an egg parasitoid of Barbitistes vicetinus Galvagni & Fontana, 1993 (Orthoptera, Tettigoniidae). This bush-cricket is endemic to northeastern Italy (mainly Euganean Hills of Veneto Region), where it has recently become an economically significant agricultural and forest pest. Data on discovery, distribution, and some remarkable biological traits of this gregarious egg parasitoid are presented. Its identification and availability of many well-preserved fresh specimens have made possible to re-define Pseudocleruchus Donev & Huber, 2002 syn. n., with type and the only described species Pseudocleruchus triclavatus Donev & Huber, 2002, as a synonym of Platystethynium Ogloblin, 1946 and its nominate subgenus, P. (Platystethynium), and also to describe the brachypterous male of P. (Platystethynium) triclavatum. It is the first known male for the entire genus. Enlarged mandibles of the megacephalous males are used to chew holes in the hard chorion of the host egg, allowing fully winged females, whose mandibles are strongly reduced and do not cross over, to emerge after mating with the males inside it. Up to 136 individual parasitoids (about 77 on average) can hatch from a single egg of B. vicetinus, with their sex ratio being strongly female biased (80–97% females per egg).
Xyleborini is the largest tribe of Scolytinae accounting for about 1300 species worldwide; all species are primarily xylomycetophagous, developing on symbiotic fungi farmed in plant woody tissues. Xyleborini wood-boring action, associated with the inoculum of symbiotic fungi, can lead, sometimes, to the emergence of host plant dieback, wood damage and death; for this reason, multiple Xyleborini are major pests on both cultivated, forest and ornamental trees. Many Xyleborini are invasive worldwide and great effort is expended to manage their biological invasions or prevent new arrivals. Imports of host plants often have a primary role as a pathway for introduction and are frequently responsible for the establishment of species in non-native environments. In this context, data availability on Xyleborini host plants is a major limiting factor in the development of effective detection and monitoring strategies as well as a fundamental variable to consider in risk assessment of plant pests and invasive species. This contribution provides updated host records and the hosts economic categorization for the 1293 Xyleborini known worldwide to date.
Insect outbreaks usually involve important ecological and economic consequences for agriculture and forestry. The short-winged bush-cricket Barbitistes vicetinus Galvagni & Fontana, 1993 is a recently described species that was considered rare until ten years ago, when unexpected population outbreaks causing severe defoliations across forests and crops were observed in north-eastern Italy. A genetic approach was used to analyse the origin of outbreak populations. The analysis of two mitochondrial regions (Cytochrome Oxidase I and II and 12S rRNA-Control Region) of 130 samples from the two disjunct ranges (Euganean and Berici Hills) showed high values of haplotype diversity and revealed a high geographical structure among populations of the two ranges. The high genetic variability observed supports the native origin of this species. In addition, results suggest that unexpected outbreaks are not a consequence of a single or few pestiferous haplotypes but rather the source of outbreaks are local populations which have experienced an increase in each area. The recent outbreaks have probably appeared independently of the genetic haplotypes whereas environmental conditions could have affected the outbreak populations. These findings contribute to a growing understanding of the status and evolutionary history of the pest that would be useful for developing and implementing biological control strategies for example by maximizing efforts to locate native natural enemies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.