We report on the green preparation of one-dimensional metal coordination polymers by sonochemical approach. The spacer ligand 4,4′-bipyridine was ultrasonicated with chloride or acetate zinc salts to obtain [Zn(4,4′-bipy)Cl2]∞ and [Zn(4,4′-bipy)2(OAc)2]∞, respectively. Benign solvents such as ethanol and water were selected as reaction media, and the synthesis took place in a few minutes—a very short time compared to conventional methods where some days’ synthesis is required. X-ray powder diffraction, Fourier transform infrared spectroscopy, thermal analysis (thermogravimetric and differential scanning calorimetry), and CHN techniques investigated the influence of using different reaction solvents on the chemical, structural, and thermal properties of the final products. The 1D [Zn(4,4′-bipy)Cl2]∞ and [Zn(4,4′-bipy)2(OAc)2]∞ polymers, in agreement with the structures reported in the literature, were obtained in the form of nanocrystals with an average crystal size around 100 nm. As a proof of concept, a set of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Klebsiella pneumoniae), and three yeast strains (Candida albicans, Candida krusei, Candida glabrata) were tested to evaluate the antimicrobial activity of the coordination polymers, following the Kirby–Bauer procedure and microplate dilution method. Thus, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimal biofilm inhibitory concentration (MBIC) were evaluated. Except for Candida krusei, the compounds showed an appreciable antimicrobial and antibiofilm activity against these strains grown in the liquid medium.
Fe−BTC materials have attracted vast attention owing to their high chemical stability, adaptable synthesis, and potential applications. Herein, we describe, for the first time, the preparation of iron trimesate gels by ultrasonic (US) irradiation of an aqueous solution of Iron (III) nitrate and trimesic acid. Two different procedures were used: (1) sonication for 10 or 20 minutes, (2) 3 minutes sonication under controlled pH (pH 3–5). After drying, stable Fe−BTC xerogels were obtained from both procedures. The xerogels consisted of interconnected spherical nanoparticles with similar microstructure when analyzed by FT‐IR and PXRD and similar thermal behavior under oxygen in the range of 25–900 °C. When analyzed by Nitrogen adsorption‐desorption at 77 K, all samples showed a permanent porosity with a narrow micropore distribution below 10 Å. Different textural properties were found among samples obtained with the same procedure. The product of 10 minutes sonication had a specific surface area (SSA) of 1042 m2/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.