A database is presented of sensory responses to electrical stimulation of the dorsal neural structures at various spine levels in 106 subjects subjected to epidural spinal cord stimulation. All patients were implanted for chronic pain management and were able to perceive stimulation in the area of pain. All patients entered in this study were able to reliably report their stimulation pattern. Several patients were implanted with more than one electrode array. The electrode arrays were placed in the dorsal epidural space at levels between C-1 and L-1. The structures that were likely involved include the dorsal roots, dorsal root entry zone, dorsal horn, and dorsal columns. At the present time, exact characterization of the structure being stimulated is possible only in limited instances. Various body areas are presented with the correspondent spine levels where implanted electrodes generate paresthesias. Areas that are relatively easy targets for stimulation are the median aspect of the hand, the abdominal wall, the anterior aspect of the thigh, and the foot. Some areas are particularly difficult to cover with stimulation-induced paresthesias; these include the C-2 distribution, the neck, the low back, and the perineum.
Vagus nerve stimulation (VNS) significantly reduces the frequency of partial seizures in refractory epilepsy patients. We examined the serious adverse events, side effects, and tolerability as they relate to the surgical implant procedure and the stimulating device. We also reviewed potential drug interactions, device output complications, and impact of the therapy on overall health status. We analyzed the first 67 patients to exist the acute phase of the EO3 VNS trial comparing high (therapeutic) VNS to low (less or noneffective) VNS. Data were collected from case report forms used at each of the four visits during the 12-week baseline and at each of the four visits during the 14-week randomized phase of the trial. No significant complications were reported as a result of the implant procedure. Serious adverse events included 1 patient who experienced direct current to the vagus nerve owing to generator malfunction resulting in left vocal cord paralysis and withdrawal of the patient from the study. No clinically significant effects on vital signs, cardiac function, or gastric function were detected. Side effects associated with VNS in the high group were hoarseness (35.5%), coughing (13.9%), and throat pain (12.9%). In the low group, only hoarseness (13.9%) and throat pain (13.9%) were associated with VNS. These effects generally wrre not considered clinically significant and occurred primarily during the stimulation pulses. No patients discontinued VNS therapy during the acute phase because of side effects associated with normal stimulation. Except for the one instance of a short circuit in the system resulting in a direct current, stimulating system complications were minor, limited to programming, unscheduled stimulation, and high lead impedance. Patients, investigators, and patient companions rated patients receiving high stimulation as more "improved" than those receiving low stimulation in regards to overall health status. Antiepileptic drug (AED) plasma concentrations were not affected by VNS. The implant procedure, stimulating system, and therapy proved safe and tolerable during the study. The high percentage (67 of 68) of patients completing the study reflects patient acceptance and tolerability of this mode of therapy.
The potential distributions produced in the spinal cord and surrounding tissues by dorsal epidural stimulation at the midcervical, midthoracic, and low thoracic levels were calculated with the use of a volume conductor model. Stimulus thresholds of myelinated dorsal column fibers and dorsal root fibers were calculated at each level in models in which the thickness of the dorsal csf layer was varied. Calculated stimulus thresholds were compared with paresthesia thresholds obtained from measurements at the corresponding spinal levels in patients. The influences of the csf layer thickness, the contact separation in bipolar stimulation and the laterality of the electrodes on the calculated thresholds were in general agreement with the clinical data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.