UV polymerization of self-assembled monolayers of a novel carbazolyl-diacetylene (CDS9) chemisorbed on silver films was demonstrated by surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) experiments. SPR tests performed during UV exposure permitted one to observe the growth of the absorption coefficient, associated with the formation of the polymeric backbone. The Raman spectra of polymerized monolayers exhibited the bands associated with the C=C stretching modes of the conjugated backbone, typical of the blue and red polymeric phases usually present in polydiacetylenes, with a clear predominance of the red form. Moreover, the strong surface enhancement of the Raman band corresponding to the aromatic C=C stretching modes suggested that carbazolyl groups arrange nearly perpendicularly to the metal surface. In contrast, the absence of a SERS signal in the region of conjugated C[triple bond]C bond stretchings confirmed a polymerization scheme with conjugated triple bonds nearly parallel to the plane of the metal.
Research on the nanoscale membrane structures known as lipid rafts is relevant to the fields of cancer biology, inflammation and ischaemia. Lipid rafts recruit molecules critical to signalling and regulation of the invasion process in malignant cells, the leukocytes that provide immunity in inflammation and the endothelial cells that build blood and lymphatic vessels, as well as the patterning of neural networks. As angiogenesis is a common denominator, regulation of receptors and signalling molecules critical to angiogenesis is central to the design of new approaches aimed at reducing, promoting or normalizing the angiogenic process. The goal of this review is to highlight some of the key issues that indicate the involvement of endothelial cell lipid rafts at each step of so-called 'sprouting angiogenesis', from stimulation of the vascular endothelial growth factor to the choice of tip cells, activation of migratory and invasion pathways, recruitment of molecules that guide axons in vascular patterning and maturation of blood vessels. Finally, the review addresses opportunities for future studies to define how these lipid domains (and their constituents) may be manipulated to stimulate the so-called 'normalization' of vascular networks within tumors, and be identified as the main target, enabling the development of more efficient chemotherapeutics and cancer immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.