SUMMARY
BackgroundProton pump inhibitors (PPIs) are one of the most widely used drug classes in the US and are now frontline medications for gastro-oesophageal reflux disease (GERD) and dyspepsia. In a previous work, we observed that a transmucosal, upper gastrointestinal (GI) leak exists in Barrett's oesophagus (BO) patients. PPI medications are commonly used by Barrett's patients.
Using orally administered sucrose as a probe of gastrointestinal permeability, this study focused on determining whether Barrett's metaplasia exhibits a paracellular transepithelial leak to small nonelectrolytes. Subjects in five separate classes (nonendoscoped, asymptomatic controls; endoscoped, asymptomatic controls; gastroesophageal reflux disease without mucosal complications; grossly visible esophagitis; and Barrett's esophagus) consumed a sucrose solution at bedtime and collected all overnight urine. Urine volume was measured and sucrose concentration was determined by high-performance liquid chromatography. Patients with Barrett's were observed to exhibit a transepithelial leak to sucrose whose mean value was threefold greater than that seen in healthy control subjects or patients with reflux but without any mucosal defect. A parallel study of claudin tight junction proteins in endoscopy biopsy samples showed that whereas Barrett's metaplasia contains dramatically more claudin-2 and claudin-3 than is found in normal esophageal mucosa, it is markedly lower in claudins 1 and 5, indicating very different tight junction barriers.
Ulcerative colitis (UC) is a common chronic disease of the large intestine. Current anti-inflammatory drugs prescribed to treat this disease have limited utility due to significant side-effects. Thus, immunotherapies for UC treatment are still sought. In the DSS mouse model of UC, we recently demonstrated that systemic administration of the Bin1 monoclonal antibody 99D (Bin1 mAb) developed in our laboratory was sufficient to reinforce intestinal barrier function and preserve an intact colonic mucosa, compared to control subjects which displayed severe mucosal lesions, high-level neutrophil and lymphocyte infiltration of mucosal and submucosal areas, and loss of crypts. A dysbiotic microbiome may lead to UC. We determined the effects of Bin1 mAb on the gut microbiome and colonic neurons and correlated the benefits of immunotherapeutic treatment. In the DSS model, we found that induction of UC was associated with disintegration of enteric neurons and elevated levels of glial cells, which translocated to the muscularis at distinct sites. Further, we characterized an altered gut microbiome in DSS treated mice associated with pathogenic proinflammatory characters. Both of these features of UC induction were normalized by Bin1 mAb treatment. With regard to microbiome changes, we observed in particular, increase in Enterobacteriaceae; whereas Firmicutes were eliminated by UC induction and Bin1 mAb treatment restored this phylum including the genus Lactobacillus. Overall, our findings suggest that the intestinal barrier function restored by Bin1 immunotherapy in the DSS model of UC is associated with an improvement in the gut microbiome and preservation of enteric neurons, contributing overall to a healthy intestinal tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.