1. Previous studies have shown that formation of 2,3-dihydroxybenzoate (2,3-DHB) from salicylate in vivo is a sensitive and specific marker of *OH radical generation, since 2,3-DHB is formed exclusively by *OH radicals, whereas both *OH radicals and cytochrome P450 (CYP) contribute to the production of 2,5-DHB. In the present study the salicylate-hydroxylation assay was used to examine whether CYP induction by the administration of dexamethasone, phenobarbital or beta-naphthoflavone to the male rat led to oxidative stress in vivo. 2. Dexamethasone was used under conditions that induced an approximately 50-fold induction of CYP P4503A expression in liver microsomal protein. Treatment with dexamethasone caused a 17.2-fold increase in 2,3-DHB plasma concentration compared with control animals. An increase in total hydroxylated salicylate (2,3-DHB plus 2,5-DHB) of 133.5 micromol/l plasma was produced, of which--assuming that the attack by *OH in position 3 or 5 of salicylate occurs at a similar rate--10.9 micromol/l were due to *OH radical attack and 122.6 micromol/l due to metabolism by CYP. 3. Phenobarbital led to a 4.7-fold increase in 2,3-DHB plasma concentration under conditions that induced CYP P4502B and 3A. An increase in total hydroxylated salicylate of 34.3 micromol/l plasma was observed, 2.0 micromol/l due to *OH radical attack and 32.3 micromol/l due to metabolism by cytochrome P450. 4. In contrast to dexamethasone and phenobarbital, beta-naphthoflavone did not cause a significant increase in 2,3-DHB plasma concentrations. 5. SKF 525A, a mixed-function oxidase inhibitor, caused a significant reduction of mean 2,5-DHB plasma concentration by 35% (p < 0.001), whereas 2,3-DHB was not significantly reduced, indicating that in contrast to the situation after induction by dexamethasone or phenobarbital, *OH radical generation by constitutive CYP contributes only to a minor degree to total in vivo *OH radical generation. 6. This study shows for the first time, to the authors' knowledge, that induction of some (but not all) P450s is associated with the production of hydroxyl radicals in vivo.
The PreciseInhale platform enabled the administration of CHF6001 powder with good accuracy and reproducibility, with low tracheal deposition. The new platform can be used at an early discovery stage to obtain inhalatory PK data for respirable aerosols of neat NCE powder without excipients and with minimal use of dry powder formulation work.
In recent years, global sensitivity analysis (GSA) has gained interest in physiologically based pharmacokinetics (PBPK) modelling and simulation from pharmaceutical industry, regulatory authorities, and academia. With the case study of an in-house PBPK model for inhaled compounds in rats, the aim of this work is to show how GSA can contribute in PBPK model development and daily use. We identified two types of GSA that differ in the aims and, thus, in the parameter variability: inter-compound and intra-compound GSA. The inter-compound GSA aims to understand which are the parameters that mostly influence the variability of the metrics of interest in the whole space of the drugs’ properties, and thus, it is useful during the model development. On the other hand, the intra-compound GSA aims to highlight how much the uncertainty associated with the parameters of a given drug impacts the uncertainty in the model prediction and so, it is useful during routine PBPK use. In this work, inter-compound GSA highlighted that dissolution- and formulation-related parameters were mostly important for the prediction of the fraction absorbed, while the permeability is the most important parameter for lung AUC and MRT. Intra-compound GSA highlighted that, for all the considered compounds, the permeability was one of the most important parameters for lung AUC, MRT and plasma MRT, while the extraction ratio and the dose for the plasma AUC. GSA is a crucial instrument for the quality assessment of model-based inference; for this reason, we suggest its use during both PBPK model development and use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.