The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures—ExoMars—Landing sites—Mars rover—Search for life. Astrobiology 17, 471–510.
This paper describes a dataset collected along a 1 km section of beach near Katwijk, The Netherlands, which was populated with a collection of artificial rocks of varying sizes to emulate known rock size densities at current and potential Mars landing sites. First, a fixed-wing unmanned aerial vehicle collected georeferenced images of the entire area. Then, the beach was traversed by a rocker-bogie-style rover equipped with a suite of sensors that are envisioned for use in future planetary rover missions. These sensors, configured so as to emulate the ExoMars rover, include stereo cameras, and time-of-flight and scanning light-detection-and-ranging sensors. This dataset will be of interest to researchers developing localization and mapping algorithms for vehicles traveling over natural and unstructured terrain in environments that do not have access to the global navigation satellite system, and where only previously taken satellite or aerial imagery is available.
Under the umbrella of the European Space Agency (ESA) StarTiger program, a rapid prototyping study called Seeker was initiated. A range of partners from space and nonspace sectors were brought together to develop a prototype Mars rover system capable of autonomously exploring several kilometers of highly representative Mars terrain over a three‐day period. This paper reports on our approach and the final field trials that took place in the Atacama Desert, Chile. Long‐range navigation and the associated remote rover field trials are a new departure for ESA, and this activity therefore represents a novel initiative in this area. The primary focus was to determine if current computer vision and artificial intelligence based software could enable such a capability on Mars, given the current limit of around 200 m per Martian day. The paper does not seek to introduce new theoretical techniques or compare various approaches, but it offers a unique perspective on their behavior in a highly representative environment. The final system autonomously navigated 5.05 km in highly representative terrain during one day. This work is part of a wider effort to achieve a step change in autonomous capability for future Mars/lunar exploration rover platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.