Natural events are often multisensory, requiring the brain to combine information from the same spatial location and timing, across different senses. The importance of temporal coincidence has led to the introduction of the temporal binding window (TBW) construct, defined as the time range within which multisensory inputs are highly likely to be perceptually bound into a single entity. Anomalies in TBWs have been linked to confused perceptual experiences and inaccurate filtering of sensory inputs coming from different environmental sources. Indeed, larger TBWs have been associated with disorders such as schizophrenia and autism and are also correlated to a higher level of subclinical traits of these conditions in the general population. Here, we tested the feasibility of using a web-based version of a classic audio-visual simultaneity judgment (SJ) task with simple flash-beep stimuli in order to measure multisensory temporal acuity and its relationship with schizotypal traits as measured in the general population. Results show that: (i) the response distribution obtained in the web-based SJ task was strongly similar to those reported by studies carried out in controlled laboratory settings, and (ii) lower multisensory temporal acuity was associated with higher schizotypal traits in the “cognitive-perceptual” domains. Our findings reveal the possibility of adequately using a web-based audio-visual SJ task outside a controlled laboratory setting, available to a more diverse and representative pool of participants. These results provide additional evidence for a close relationship between lower multisensory acuity and the expression of schizotypal traits in the general population.
Alpha-band (7–13 Hz) activity has been linked to visuo-attentional performance in healthy participants and to impaired functionality of the visual system in a variety of clinical populations including patients with acquired posterior brain lesion and neurodevelopmental and psychiatric disorders. Crucially, several studies suggested that short uni- and multi-sensory rhythmic stimulation (i.e., visual, auditory and audio-visual) administered in the alpha-band effectively induces transient changes in alpha oscillatory activity and improvements in visuo-attentional performance by synchronizing the intrinsic brain oscillations to the external stimulation (neural entrainment). The present review aims to address the current state of the art on the alpha-band sensory entrainment, outlining its potential functional effects and current limitations. Indeed, the results of the alpha-band entrainment studies are currently mixed, possibly due to the different stimulation modalities, task features and behavioral and physiological measures employed in the various paradigms. Furthermore, it is still unknown whether prolonged alpha-band sensory entrainment might lead to long-lasting effects at a neural and behavioral level. Overall, despite the limitations emerging from the current literature, alpha-band sensory entrainment may represent a promising and valuable tool, inducing functionally relevant changes in oscillatory activity, with potential rehabilitative applications in individuals characterized by impaired alpha activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.