Recent studies report that the polarity gene myelin and lymphocyte protein 2 (MAL2), is overexpressed in multiple human carcinomas largely at the transcript level. Because chromosome 8q24 amplification (where MAL2 resides) is associated with hepatocellular- and cholangio-carcinomas, we examined MAL2 protein expression in these human carcinoma lesions and adjacent benign tissue using immunohistochemistry. For comparison, we analyzed renal cell carcinomas that are not associated with chromosome 8q24 amplification. Surprisingly, we found that MAL2 protein levels were decreased in the malignant tissues compared to benign in all three carcinomas, suggesting MAL2 expression may be anti-oncogenic. Consistent with this conclusion, we determined that endogenously overexpressed MAL2 in HCC-derived Hep3B cells or exogenously expressed MAL2 in hepatoma-derived Clone 9 cells (that lack endogenous MAL2) promoted actin-based protrusion formation with a reciprocal decrease in invadopodia. MAL2 overexpression also led to decreased cell migration, invasion and proliferation (to a more modest extent) while loss of MAL2 expression reversed the phenotypes. Mutational analysis revealed that a putative Ena/VASP homology 1 recognition site confers the MAL2-phenotype suggesting its role in tumor suppression involves actin remodeling. To reconcile decreased MAL2 protein expression in human carcinomas and its anti-oncogenic phenotypes with increased transcript levels, we propose a transcriptional regulatory model for MAL2 transient overexpression.
Mammalian ras genes encode a family of plasma membrane-bound proteins that function as intermediates in signal transduction pathways involved in cell growth and differentiation. Ras oncogene is frequently involved in neoplastic transformation of different cellular histotypes. In this study, we tested the ability of antisense oligodeoxyribonucleotides (AS-ODN) that have mixed phosphodiester/phosphorothioate backbone, targeted against human N-Ras, to inhibit N-ras gene expression and to specifically interfere with the Ras-dependent activity of mitogen-activated protein kinase (MAPK) in two human cell lines carrying an endogenous N-ras mutated allele at codon 61. Three AS-ODN that inhibit basal MAPK activity have been identified. Moreover, AS-ODN treatment resulted in potent antiproliferative effects in cell culture and great inhibition of N-ras mRNA levels in one of two cell lines. These studies suggest that antisense molecules, targeted against N-Ras, could be of considerable value as a tool to study the N-Ras-specific transduction pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.